

**CITY OF LA VISTA
EMERGENCY MEETING
MAYOR AND CITY COUNCIL REPORT
NOVEMBER 24, 2020 AGENDA**

Subject:	Type:	Submitted By:
COVID-19 RULES/REGULATIONS FACE COVERINGS	RESOLUTION ◆ ORDINANCE RECEIVE/FILE	BRENDA S. GUNN CITY ADMINISTRATOR

SYNOPSIS

Rules and regulations are set forth in a proposed ordinance for immediate action at this emergency meeting in response to the emergency presented by the Novel Coronavirus (COVID-19) pandemic, continued community transmission and increased number of confirmed COVID-19 cases within the City, and resulting dangers to the public health, safety, and welfare. The ordinance, among other matters, requires face coverings while indoors and posting notice of such requirement, and provides for exceptions, enforcement, penalties, abatement, periodic updates, and sunset.

FISCAL IMPACT

N/A.

RECOMMENDATION

Approval.

BACKGROUND

The latest data indicates that positivity levels in La Vista and adjacent parts of the metropolitan area are unprecedented. Over the past four weeks, the positivity rate for the Sarpy/Cass Health Department jurisdiction has doubled from 15.25% (week ending 10/17/20) to 31.51% (week ending 11/14/20). Over the same four-week period the seven-day rolling average of cases/day/100,000 residents has increased from 41.6 cases per day to 96.9. Currently, there are 1,032 active cases in Sarpy County, with 108 active cases in the 68128 zip code area and 65 in 68138 (La Vista's ETJ).

The White House Coronavirus Task Force report identified that Nebraska is in the red zone for cases, indicating 101 or more new cases per 100,000 population, with the sixth highest rate in the Country. Over the past three weeks, Douglas County, Lancaster County and Sarpy County have had the highest number of new cases, representing nearly half of the new cases in the state. Hospitalizations are also on the rise which is placing a tremendous burden on the hospital systems. The task force report called current mitigation efforts "inadequate".

As of November 22, 2020, there are 22.8% of staffed beds in NE being occupied by COVID-19 patients – causing hospitals to be at or near capacity. In the Metro Omaha Healthcare Coalition (all hospitals in our region) the number of inpatients diagnosed with COVID-19 has increased dramatically over the last month

(average of 137/patients/day for week of 10/17 vs. 378 for week ending 11/14). For the week ending 11/21 the daily average of inpatients with COVID is up to 421.

In response to unprecedented coronavirus case numbers, positivity rates, seven day rolling average per 100,000 residents and hospitalizations in La Vista and adjacent parts of Sarpy County and the Omaha metropolitan area, staff was directed to prepare for immediate consideration proposed rules and regulations to require face coverings while indoors in the City (“Rules and Regulations”) and to make necessary arrangements for emergency consideration.

Rules and Regulations are presented in proposed ordinance included with the agendas for emergency meetings of the Board of Health and City Council. A proposed resolution also is presented for consideration at the Board of Health meeting which provides that Board of Health approval of the Rules and Regulations set forth in the proposed ordinance shall be subject to City Council approval, or modification and approval. The proposed ordinance, among other matters requires face coverings while indoors and posting notice of such requirement, and provides for exceptions, enforcement, penalties, abatement, periodic updates, and sunset; and if passed as an emergency ordinance would take effect upon the Mayor’s proclamation immediately upon its first publication on November 27, 2020.

Attachments:

- JAMA (November 17, 2020) -Preventing the Spread of SARS-CoV-2 with Masks and Other “Low-tech” Interventions
- News Channel Nebraska (November 17, 2020) — White House COVID-19 Task Force calls Nebraska virus spread ‘exponential and unyielding’
- CDC Scientific Brief: Community Use of Cloth Masks to Control the Spread of SARS-CoV-2 — (Updated November 10, 2020)
- Scientific Brief: Community Use of Cloth Masks to Control the Spread of SARS-CoV-2 — Nebraska Medicine Global Center for Health Security (November 17, 2020)
- Nebraska Medicine (November 17, 2020) — 1700+ Nebraska health care workers signed a letter asking for your help
- Health Affairs (August 2020) — Community Use of Face Masks and COVID-19: Evidence from a Natural Experiment of State Mandates in the US
- Physics of Fluids (June 2020) — Visualizing the effectiveness of face masks in obstructing respiratory jets

ORDINANCE NO. _____

AN ORDINANCE TO AMEND CHAPTER 92 OF THE LA VISTA MUNICIPAL CODE TO ADD SUBCHAPTER 92.30 ENTITLED "PREVENTION OF COVID-19"; TO PROVIDE LEGISLATIVE FINDINGS AND INTENT; TO REQUIRE FACE COVERINGS WHILE INDOORS WITHIN THE CITY, NOTICE OF SUCH REQUIREMENT, AND EXCEPTIONS; TO DECLARE PUBLIC NUISANCE AND PROVIDE FOR PENALTIES, ABATEMENT, SUNSET AND REQUIRED REPORTING; TO REPEAL CONFLICTING PROVISIONS; AND TO PROVIDE FOR SEVERABILITY, PUBLICATION AND EFFECTIVE DATE

BE IT ORDAINED BY THE MAYOR AND CITY COUNCIL OF THE CITY OF LA VISTA, NEBRASKA, as follows:

I. As result of the Novel Coronavirus (COVID-19) pandemic, continued community transmission and increased number of confirmed COVID-19 cases within the City limits of the City of La Vista, and resulting dangers to the public health, safety, and welfare, an emergency exists within the City of La Vista requiring immediate action of the City as provided in this ordinance. This ordinance shall amend Chapter 92 of the La Vista Municipal Code to adopt rules and regulations for a non-pharmaceutical intervention to combat and halt the spread and progression of COVID-19.

II. Chapter 92 of the La Vista Municipal Code is hereby amended by adding subchapter 92.30 as follows:

"§92.30. — PREVENTION OF COVID-19

Sec. 92.30.1. — Legislative Findings and Intent.

- (1) The City Council hereby finds and declares, based upon the scientific and medical evidence before it, that:
 - (a) the Novel Coronavirus (COVID-19) has impacted and continues to dramatically impact the citizens of the City of La Vista, Nebraska; and
 - (b) exposure to COVID-19 presents a risk of death or serious long-term disability; the exposure is widespread and poses significant risk of harm, including death, to people in the general population of the City of La Vista; there is a particular subset of the population that is more vulnerable to the threat and thus at an increased risk; and the threat is from a novel infectious disease; and
 - (c) information from the World Health Organization, the United States Centers for Disease Control and Prevention (CDC), Nebraska Department of Health and Human Services, the Sarpy/Cass Health Department, local public health departments throughout Nebraska, and members of the Sarpy County and metropolitan area medical community indicate that citizens of the metropolitan area, including the City of La Vista, have been and will continue to be exposed due to community transmissions of COVID-19; and
 - (d) the manner in which the spread of COVID-19 cases in the City of La Vista has occurred creates an unacceptable risk to the health, safety, and welfare of the citizens of the City of La Vista; and
 - (e) the number of COVID-19 infections within the City of La Vista continues to increase; and
 - (f) COVID-19 constitutes a public nuisance and a threat to the health, safety, and welfare of the City of La Vista and its residents; and
 - (g) The Director of the CDC, the Director the Sarpy/Cass Health Department, doctors and infectious disease experts from the University of Nebraska Medical Center and Nebraska Medicine, as well as others in the medical profession, have concluded that the wearing of face coverings by every individual while in public, particularly while indoors, is one of the best methods to slow and stop the spread of COVID-19; and
 - (h) the wearing of face coverings by every individual while indoors in public places in the City of La Vista will reduce community transmissions of COVID-19, resulting in fewer deaths and serious health complications, and will ease the strain on hospitals and other medical offices and facilities; and

- (1) the wearing of face coverings by every individual while indoors in public places in the City of La Vista will increase the chances of keeping businesses open and operating, encouraging economic growth and preventing prolonged economic harm; and
- (i) it is just and proper for the City Council to exercise the authority granted to it by applicable law, including without limitation Neb. Rev. Stat. Sections 16-238, 16-240, 16-246, and 18-1720, in furtherance of protecting the public health, safety, and welfare.

Sec. 92.30.2. — Definitions.

For purposes of this subchapter, the following terms are defined as follows:

- (1) **Face Covering.** — A face covering is defined as a covering which, when worn properly, must cover the nose and mouth completely and can include a paper or disposable face mask, a cloth face mask, a scarf, a bandanna, a neck gaiter, or a religious face covering. Medical-grade masks and respirators are sufficient face coverings, but to preserve adequate supplies, their purchase and use is discouraged for those who do not work in a health care setting or in other occupations that require medical-grade personal protective equipment. Masks that incorporate a valve designed to facilitate easy exhaling, mesh masks, or masks with openings, holes, visible gaps in the design or material, or vents are not sufficient face coverings because they allow exhaled droplets to be released into the air.
- (2) **Premises That Is (or Are) Open to the General Public.** — Premises that is (or are) open to the general public means property upon or into which any members of the public are allowed to enter. The term is intended to be broadly defined to include without limitation real or personal property owned or operated by entities that employ or engage workers, including private-sector entities, public-sector entities, non-profit entities, regular commercial or business establishments, private clubs, religious centers or buildings, public transportation (including buses, taxis, ride-sharing vehicles, or vehicles used for business purposes), and any place which is generally open to any members of the public, including educational institutions and daycare facilities.
- (3) **Subchapter.** — **Subchapter** means the provisions set forth in sections 92.30.1 through 92.30.12.

Sec. 92.30.3. — individual Face Coverings Required.

All individuals age five (5) and older shall wear a face covering over their mouth and nose while indoors in a premises that is open to the general public including, but not limited to, educational institutions, unless the individual maintains a minimum of six (6) feet of separation or social distance at all times from anyone who is not a member of the individual's household, except face coverings will not be required if the individual:

- (1) is seeking federal, state, county, or city governmental services;
- (2) is seated at a bar or restaurant to eat or drink, or while immediately consuming food or beverages;
- (3) is engaged in an occupation preventing the wearing of a face covering;
- (4) is obtaining a service or purchasing goods or services that requires the temporary removal of the face covering;
- (5) is asked to remove a face covering to verify an identity for lawful purposes;
- (6) is providing a speech, lecture, or broadcast to an audience so long as six (6) feet of distancing from other individuals is maintained; or
- (7) cannot otherwise wear a face covering because of a medical condition, a mental health condition, or a disability that makes it unreasonable for the individual to wear a face covering.

Nothing in this section shall prohibit the owner or person in charge of a premises that is open to the general public, including without limitation the owner or person in charge of any federal, state, city, or other governmental facility, from requiring an individual to wear a face covering during any of the circumstances enumerated above or from implementing a more restrictive face covering policy.

Sec. 92.30.4. — Premises That Are Open to the Public — Duty to Require Face Coverings.

Any individual or entity which maintains premises that are open to the general public including, but not limited to, educational institutions, shall require all individuals age five (5) and older to wear a face covering over their mouth and nose while indoors in said

premises, unless the individual maintains a minimum of six (6) feet of separation or social distance at all times from anyone who is not a member of the individual's household, except face coverings will not be required if the individual:

- (1) is seeking federal, state, county, or city governmental services;
- (2) is seated at a bar or restaurant to eat or drink, or while immediately consuming food or beverages;
- (3) is engaged in an occupation preventing the wearing of a face covering;
- (4) is obtaining a service or purchasing goods or services that requires the temporary removal of the face covering;
- (5) is asked to remove a face covering to verify an identity for lawful purposes;
- (6) is providing a speech, lecture, or broadcast to an audience so long as six (6) feet of distancing from other individuals is maintained; or
- (7) cannot otherwise wear a face covering because of a medical condition, a mental health condition, or a disability that makes it unreasonable for the individual to wear a face covering.

Nothing in this section shall prohibit the owner or person in charge of a premises that is open to the general public, including without limitation the owner or person in charge of any federal, state, city, or other governmental facility, from requiring an individual to wear a face covering during any of the circumstances enumerated above or from implementing a more restrictive face covering policy.

Sec. 92.30.5. — Notice of Face Covering Requirements.

Any individual or entity which maintains premises that are open to the general public, including but not limited to educational institutions, must post one or more signs that are visible to all persons — including workers, customers, and visitors — instructing them to wear face coverings as required by this subchapter. The signs required by this section must be printed on a poster or paper that is a minimum size of 8.5 inches by 11 inches, and be written or typed in a legible font or typeface that is no smaller than 12 points of leading or 12-point type.

Sec. 92.30.6. — Exceptions.

The provisions of this subchapter shall not apply to:

- (1) Courts of law; public utilities or federal, state, county, or city operations; medical providers, facilities, or pharmacies; congregate living centers or facilities; group homes and residential drug and/or mental health treatment facilities; shelters; airport travel; election offices; polling places on an election day; or to residential dwelling units.
- (2) Children under the age of five (5). While children ages three (3) and four (4) may wear a face covering if that child can remove the face covering without assistance, guidance from the CDC states that children two (2) years old and under should never wear a face covering due to the risk of suffocation.
- (3) Federal and state activities. Nothing in this subchapter shall be construed to limit, prohibit, or restrict in any way the operations of the federal or state government or the movement of federal or state officials in the City while acting in their official capacity, including federal and state judicial, legislative, and executive staff and personnel.
- (4) Individuals at their workplace when wearing a face covering would create a job hazard for the individual or others, as determined by federal, state, or local regulators or workplace safety and health standards and guidelines.
- (5) Individuals who are alone in an office, room, a vehicle, the cab of heavy equipment or machinery, or an enclosed work area. In such situations, the individual should still carry a face covering to be prepared for person-to-person interactions and to be used when the individual is no longer alone.
- (6) Individuals who are seated at a desk or standing at a stationary work station, provided that the desk or work station has a solid Plexiglas or plastic barrier installed upon it which cannot be moved.
- (7) Individuals who are officiating at a religious service.
- (8) Individuals communicating with other individuals who are deaf or hard of hearing or who have a disability, medical condition, or mental health condition that makes communication with that individual while wearing a face covering difficult, provided

that minimum social distancing of six (6) feet or more is maintained to the extent possible between persons who are not members of the same household.

- (9) Individuals who are engaged in activities, such as swimming or showering, where the face covering will get wet.
- (10) Individuals who are exercising in an indoor business or indoor space such as a gym or fitness center, while the level of exertion makes it difficult to wear a face covering, provided that minimum social distancing of six (6) feet or more is maintained at all times.
- (11) Individuals in an indoor premises that is generally open to the public while playing a musical instrument that cannot be played when a face covering is worn, provided that a minimum social distancing of six (6) feet or more is maintained at all times.
- (12) Individuals actively participating in a team sports activity, while the level of exertion makes it difficult to wear a face covering.
- (13) Public safety workers actively engaged in a public safety role, including but not limited to law enforcement personnel, fire fighters, or emergency medical personnel, in situations where wearing a face covering would seriously interfere in the performance of the individual's public safety responsibilities.

Nothing in this section shall prohibit the owner or person in charge of a premises that is open to the general public, including without limitation the owner or person in charge of any federal, state, city, or other governmental facility, from requiring an individual to wear a face covering during any of the circumstances enumerated above or from implementing a more restrictive face covering policy.

Sec. 92.30.7. — Public Nuisance Declared.

Any individual or entity which maintains premises that are open to the general public who fails to comply with the requirements of section 92.30.4, above, is hereby declared to be a nuisance and a danger to the public health, safety, and welfare.

Sec. 92.30.8. — Application.

The provisions of this subchapter shall only apply to all persons and property within the corporate limits of the City of La Vista and shall not extend into the extraterritorial jurisdiction of the City.

Sec. 92.30.9. — Penalty.

Any individual or person who is found to have violated any of the provisions of this subchapter shall be guilty of an infraction as defined in Neb. Rev. Stat. Section 29-436 and shall be subjected to the fines set forth in such Section 29-436; provided, however, the fine for an initial offense shall be \$25.00. Each instance of violation of this subchapter may be considered a separate offense.

Sec. 92.30.10. — Civil Abatement.

In addition to any other penalty sought or obtained under this subchapter or other applicable law, the City Attorney, upon direction of the Mayor or City Administrator, may institute injunctive or other appropriate civil proceedings necessary to obtain compliance with this subchapter or to abate any nuisance resulting from violations of this subchapter.

Sec. 92.30.11. — Sunset Provision.

The requirements imposed by this subchapter shall expire and terminate at 11:59 p.m. on February 23, 2021, unless otherwise extended by ordinance of the City Council.

92.30.12. — Report Required.

The City Administrator of the City of La Vista, or any designee of the City Administrator, while the provisions of this subchapter remain in effect, periodically shall prepare a report or update to be delivered to the Mayor and the City Council. The report or update shall contain information from the prior report or update on the status of COVID-19 infections in the City of La Vista and such additional information as the Mayor or City Council shall specify, which may include, for example, information on the current number of cases in the City, the number of new cases diagnosed, the number of tests performed, the positivity rate of those tests, the number of new deaths that have occurred, the metropolitan area hospital occupancy rate, the ventilator utilization rate, the COVID-19 hospitalization rate, a breakdown of cases by zip code, and any such other information that the City Administrator, such designee, Mayor or City Council deems relevant to the spread of COVID-19 within the City of La Vista.”

III. Repeal of Conflicting Provisions. Any and all Ordinances or portions thereof, which are in conflict herewith are hereby repealed.

IV. Severability. The sections, subsections, paragraphs, sentences, clauses, and phrases of this Ordinance are severable, and if any section, subsection, paragraph, sentence, clause, or phrase of this Ordinance, for any reason, shall be declared invalid, unenforceable, or unconstitutional by the valid judgment or decree of a court of competent jurisdiction, such invalidity, unenforceability, or unconstitutionality shall not affect any of the remaining sections, subsections, paragraphs, sentences, clauses, or phrases of this Ordinance. The Mayor and City Council of the City of La Vista hereby declare that it would have passed this Ordinance and each section, subsection, paragraph, sentence, clause or phrase hereof, irrespective of the fact that any one or more sections, subsections, paragraphs, sentences, clauses or phrases be declared unconstitutional or invalid.

V. Publication and Effective Date. This Ordinance shall be published and in force and effect in accordance with applicable law; provided, however, this Ordinance shall constitute an emergency ordinance and take effect upon the proclamation of the Mayor immediately upon its first publication if passed by an affirmative three-fourths vote of the City Council.

PASSED AND APPROVED THIS ____TH DAY OF _____, 2020

CITY OF LA VISTA

Douglas Kindig, Mayor

ATTEST

Pamela A. Buethe, CMC
City Clerk

VIEWPOINT

Preventing the Spread of SARS-CoV-2 With Masks and Other "Low-tech" Interventions

Andrea M. Lerner, MD, MS

National Institute of Allergy and Infectious Diseases, Bethesda, Maryland.

Gregory K. Folkers, MS, MPH
National Institute of Allergy and Infectious Diseases, Bethesda, Maryland.

Anthony S. Fauci, MD
National Institute of Allergy and Infectious Diseases, Bethesda, Maryland.

Audio and Video

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of coronavirus disease 2019 (COVID-19), has caused a global pandemic of historic proportions in the 10 months since cases were first reported in Wuhan, China, in December 2019, with worldwide morbidity, mortality, and disruptions to society.

Ultimately, a safe and effective vaccine will be essential to control the pandemic and allow resumption of the many activities of normal life. While results of phase 3 trials for multiple candidate vaccines are on the near horizon, "low-tech" tools to prevent the spread of SARS-CoV-2 are essential, and it must be emphasized that these interventions will still be needed after a vaccine is initially available. Even if one or more vaccines have high efficacy and uptake in the population, it will take at least several months for enough people to be vaccinated to confer herd immunity on a population basis.

Modalities in the combination prevention "toolbox" against the spread of SARS-CoV-2 include wearing masks, physical distancing, hand hygiene, prompt testing (along with isolation and contact tracing), and limits on crowds and gatherings. If a vaccine has only moderate efficacy, or if vaccine uptake is low, these other modalities will be even more critical.

Return to normalcy will require the widespread acceptance and adoption of mask wearing and other inexpensive and effective interventions as part of the COVID-19 prevention toolbox.

Wearing face coverings—masks—in the community setting to prevent the spread of SARS-CoV-2 is a key component of this combination approach. Multiple lines of evidence support the effectiveness of masks for the prevention of SARS-CoV-2 transmission. Mandates for the wearing of masks in public have been associated with a decline in the daily growth rate of COVID-19 cases in the US. The implementation of such mandates averted more than 200 000 cases of COVID-19 by May 22, 2020, according to modeling estimates.¹

Randomized clinical trials of community mask use are challenging to conduct because of ethical and practical considerations. Observational studies have substantial limitations but can be instructive. For example, a study of secondary SARS-CoV-2 transmission in 124 Chinese households found that mask wearing at home by 1 or more family members before the onset of symptoms in the primary case was associated with a lower odds of secondary transmission (adjusted odds ratio, 0.21 [95% CI, 0.06-0.79]).² In a study at a US academic

medical center, after the implementation of universal mask use for all health care workers and patients, the SARS-CoV-2 positivity rate among health care workers declined from 14.65% to 11.46%, with a decline of 0.49% per day.³

To understand the rationale for mask wearing to prevent SARS-CoV-2 transmission, it is helpful to understand how the virus spreads from person to person. SARS-CoV-2 is primarily transmitted by respiratory droplets exhaled by infected individuals; these droplets span a spectrum of sizes. Larger droplets fall out of the air relatively quickly while close to the source, usually within a 6-foot distance. Smaller droplets, often referred to as aerosols, are also present at close range but may remain in the air over time and greater distances, decreasing in concentration as they move outward from their source.⁴

The epidemiology of SARS-CoV-2 indicates that most infections are likely spread through exposure to an infected individual at close range, within about 6 feet. However, recent reports indicate that aerosols remaining in the air over longer distances or times also have been involved in SARS-CoV-2 transmission in certain circumstances, often in poorly ventilated enclosed spaces and

associated with behaviors such as singing, shouting, or breathing heavily during exercise. The Centers for Disease Control and Prevention (CDC) recently updated its guidance to acknowledge this potential for airborne spread of SARS-CoV-2.⁴

Blocking the dispersion of respiratory droplets from an individual infected with SARS-CoV-2 via use of a mask that functions as a physical barrier is a logical strategy to curb transmission. Surgical masks can reduce respiratory virus shedding in exhaled breath,⁵ and the filtering efficacy of some materials used in cloth masks may approach that of surgical masks.⁶

Respiratory droplets are produced not only by coughing and sneezing, but also when speaking and simply breathing.⁴ Light-scattering experiments indicate that 1 minute of loud speaking potentially can generate more than 1000 virion-containing aerosols that may linger in the air in a closed, stagnant environment.⁷ These particles may accumulate in enclosed spaces with poor ventilation, especially when individuals are singing, shouting, or breathing heavily (eg, with physical exercise). Therefore, the commonly observed practice of individuals removing their mask when speaking is not advisable. With the onset of colder weather in the northern hemisphere, activities will increasingly occur inside, resulting in often-unavoidable congregating. Therefore, it is particularly important to continually

Corresponding Author: Andrea M. Lerner, MD, MS, National Institutes of Health, 31 Center Dr, Room 7A10A, Bethesda, MD 20892 (andrea.lerner@nih.gov).

emphasize the necessity of consistent wearing of masks, particularly in the indoor setting.

Recent evidence suggests that up to 40% to 45% of people infected with SARS-CoV-2 may never be symptomatic but still can transmit the virus.⁴ Viral spread from people without symptoms may account for more than 50% of transmission events in COVID-19 outbreaks.⁵ Since it has now become evident that individuals capable of transmitting SARS-CoV-2 cannot be identified solely by the presence of symptoms, universal mask wearing in the community for source control is recommended.⁴

Masks should be used in combination with other modalities to prevent the spread of SARS-CoV-2, including physical distancing, hand hygiene, adequate ventilation, and avoiding crowded spaces. Widespread testing for SARS-CoV-2 infection is also important but insufficient on its own for pandemic control. No test is perfect; all have a lower limit of detection for viral material and the potential

for false negatives. In addition, the result of a test represents just one point in time and does not indicate an individual's status outside of the moment the specimen was collected. Testing, along with contact tracing and the isolation of individuals who are infected, is a key tool for curbing the spread of SARS-CoV-2. However, reliance on testing alone to prevent transmission will be ineffective without the use of additional strategies such as mask wearing and physical distancing.

As countries around the world seek to safely reopen businesses, schools, and other facets of society, mask use in the community to prevent the spread of SARS-CoV-2, in conjunction with other low-cost, low-tech, commonsense public health practices, is and will remain critical. Return to normalcy will require the widespread acceptance and adoption of mask wearing and other inexpensive and effective interventions as part of the COVID-19 prevention toolbox.

ARTICLE INFORMATION

Published Online: October 26, 2020.
doi:10.1001/jama.2020.21946

Conflict of Interest Disclosures: None reported.

REFERENCES

1. Lyu W, Wehby GL. Community use of face masks and COVID-19: evidence from a natural experiment of state mandates in the US. *Health Aff (Millwood)*. 2020;39(8):1419-1425. doi:10.1377/hlthaff.2020.00818
2. Wang Y, Tian H, Zhang L, et al. Reduction of secondary transmission of SARS-CoV-2 in households by face mask use, disinfection and social distancing: a cohort study in Beijing, China. *BMJ Glob Health*. 2020;5(5):e002794. doi:10.1136/bmjgh-2020-002794
3. Wang X, Ferro EG, Zhou G, Hashimoto D, Bhait D, et al. Association between universal masking in a health care system and SARS-CoV-2 positivity among health care workers. *JAMA*. 2020;324(7):703-704. doi:10.1001/jama.2020.12897
4. Centers for Disease Control and Prevention, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases. Scientific Brief: SARS-CoV-2 and potential airborne transmission. Updated October 5, 2020. Accessed October 8, 2020. <https://www.cdc.gov/coronavirus/2019-ncov/more/scientific-brief-sars-cov-2.html>
5. Leung NHI, Chu DKW, Shiu EYC, et al. Respiratory virus shedding in exhaled breath and efficacy of face masks. *Nat Med*. 2020;26(5):676-680. doi:10.1038/s41591-020-0843-2
6. Konda A, Prakash A, Moss GA, Schmoldt M, Grant GD, Guha S. Aerosol filtration efficiency of common fabrics used in respiratory cloth masks. *ACS Nano*. 2020;14(5):6339-6347. doi:10.1021/acsnano.0c03252
7. Stadnytskyi V, Bax CE, Bax A, Anfinrud P. The airborne lifetime of small speech droplets and their potential importance in SARS-CoV-2 transmission. *Proc Natl Acad Sci U S A*. 2020;117(22):11875-11877. doi:10.1073/pnas.2006874117
8. Moghadas SM, Fitzpatrick MC, Sah P, et al. The implications of silent transmission for the control of COVID-19 outbreaks. *Proc Natl Acad Sci U S A*. 2020;117(30):17513-17515. doi:10.1073/pnas.2008373117

How to Watch in Your Area

(story/40489340/watch-ncn)


NEWS

White House COVID-19 Task Force calls Nebraska virus spread 'exponential and unyielding'

Nebraska is also in the red zone for test positivity, indicating a rate at or above 10.1%, with the fourth highest rate in the country.

Tuesday, November 17th 2020, 3:12 PM CST

By KETV NewsWatch 7

Coronavirus Image

According to the newest White House Coronavirus Task Force Report, Nebraska is in the red zone for cases, indicating 101 or more new cases per 100,000 population, with the sixth highest rate in the country.

Nebraska is also in the red zone for test positivity, indicating a rate at or above 10.1%, with the fourth highest rate in the country.

Douglas County, Lancaster County and Sarpy County have had the highest number of new cases over the past three weeks, representing nearly half of the new cases in the state.

Nebraska had 735 new cases per 100,000 population, compared to a national average of 294 per 100,000.

"Between Nov. 7 and Nov. 13, on average, 124 patients with confirmed COVID-19 and 38 patients with suspected COVID-19 were reported as newly admitted each day to hospitals in Nebraska," the report states.

A total of 94% of hospitals received new COVID-19 patients in this time period.

The task force called current mitigation efforts "inadequate."

"COVID-19 spread in Nebraska is exponential and unyielding, with hospitalizations increasing week over week and reported limited bed availability. Increases from the past two weeks correlate with Halloween and related activities. With Thanksgiving and upcoming holidays, Nebraskans must understand the COVID-19 situation statewide," the report states. "Serious messaging and action are needed from state leadership; recommending Nebraskans wear masks in public settings communicates the current risk level and an action all Nebraskans need to take."

0 Comments

Sort by **Oldest**

Add a comment...

Facebook Comments Plugin

Upcoming Events

Thu, Nov 19 @8:00pm

**The Steel Woods,
Sack of Lions, Pon...**

Bourbon Theatre

Sat, Nov 21 @6:00pm

6th Annual Harvest Gala

The Leadership Center

Sun, Dec 06 @7:30pm

David Sedaris

Kimball Recital Hall

Sun, Dec 06 @8:00pm

Lost Dog Street Band

Bourbon Theatre

Scientific Brief: Community Use of Cloth Masks to Control the Spread of SARS-CoV-2

Updated Nov. 10, 2020 [Print](#)

Background

SARS-CoV-2 infection is transmitted predominately by respiratory droplets generated when people cough, sneeze, sing, talk, or breathe. CDC recommends community use of masks, specifically non-valved multi-layer cloth masks, to prevent transmission of SARS-CoV-2. Masks are primarily intended to reduce the emission of virus-laden droplets ("source control"), which is especially relevant for asymptomatic or presymptomatic infected wearers who feel well and may be unaware of their infectiousness to others, and who are estimated to account for more than 50% of transmissions.^{1,2} Masks also help reduce inhalation of these droplets by the wearer ("filtration for personal protection"). The community benefit of masking for SARS-CoV-2 control is due to the combination of these effects; individual prevention benefit increases with increasing numbers of people using masks consistently and correctly.

Source Control to Block Exhaled Virus

Multi-layer cloth masks block release of exhaled respiratory particles into the environment,³⁻⁶ along with the microorganisms these particles carry.^{7,8} Cloth masks not only effectively block most large droplets (i.e., 20-30 microns and larger)⁹ but they can also block the exhalation of fine droplets and particles (also often referred to as aerosols) smaller than 10 microns;^{3,5} which increase in number with the volume of speech¹⁰⁻¹² and specific types of phonation.¹³ Multi-layer cloth masks can both block up to 50-70% of these fine droplets and particles^{3,14} and limit the forward spread of those that are not captured.^{5,6,15,16} Upwards of 80% blockage has been achieved in human experiments that have measured blocking of all respiratory droplets,⁴ with cloth masks in some studies performing on par with surgical masks as barriers for source control.^{3,9,14}

Filtration for Personal Protection

Studies demonstrate that cloth mask materials can also reduce wearers' exposure to infectious droplets through filtration, including filtration of fine droplets and particles less than 10 microns. The relative filtration effectiveness of various masks has varied widely across studies, in large part due to variation in experimental design and particle sizes analyzed. Multiple layers of cloth with higher thread counts have demonstrated superior performance compared to single layers of cloth with lower thread counts, in some cases filtering nearly 50% of fine particles less than 1 micron.^{14,17-29} Some materials (e.g., polypropylene) may enhance filtering effectiveness by generating triboelectric charge (a form of static electricity) that enhances capture of charged particles^{18,30} while others (e.g., silk) may help repel moist droplets³¹ and reduce fabric wetting and thus maintain breathability and comfort.

Human Studies of Masking and SARS-CoV-2 Transmission

Data regarding the "real-world" effectiveness of community masking are limited to observational and epidemiological studies.

- An investigation of a high-exposure event, in which 2 symptomatically ill hair stylists interacted for an average of 15 minutes with each of 139 clients during an 8-day period, found that none of the 67 clients who subsequently consented to an interview and testing developed infection. The stylists and all clients universally wore masks in the salon as required by local ordinance and company policy at the time.³²
- In a study of 124 Beijing households with ≥ 1 laboratory-confirmed case of SARS-CoV-2 infection, mask use by the index patient and family contacts before the index patient developed symptoms reduced secondary transmission within the

nousenolas by 79%.³³

- A retrospective case-control study from Thailand documented that, among more than 1,000 persons interviewed as part of contact tracing investigations, those who reported having always worn a mask during high-risk exposures experienced a greater than 70% reduced risk of acquiring infection compared with persons who did not wear masks under these circumstances.³⁴
- A study of an outbreak aboard the USS Theodore Roosevelt, an environment notable for congregate living quarters and close working environments, found that use of face coverings on-board was associated with a 70% reduced risk.³⁵
- Investigations involving infected passengers aboard flights longer than 10 hours strongly suggest that masking prevented in-flight transmissions, as demonstrated by the absence of infection developing in other passengers and crew in the 14 days following exposure.^{36,37}

Seven studies have confirmed the benefit of universal masking in community level analyses: in a unified hospital system,³⁸ a German city,³⁹ a U.S. state,⁴⁰ a panel of 15 U.S. states and Washington, D.C.,^{41,42} as well as both Canada⁴³ and the U.S.⁴⁴ nationally. Each analysis demonstrated that, following directives from organizational and political leadership for universal masking, new infections fell significantly. Two of these studies^{42,44} and an additional analysis of data from 200 countries that included the U.S.⁴⁵ also demonstrated reductions in mortality. An economic analysis using U.S. data found that, given these effects, increasing universal masking by 15% could prevent the need for lockdowns and reduce associated losses of up to \$1 trillion or about 5% of gross domestic product.⁴²

Conclusions

Experimental and epidemiological data support community masking to reduce the spread of SARS-CoV-2. The prevention benefit of masking is derived from the combination of source control and personal protection for the mask wearer. The relationship between source control and personal protection is likely complementary and possibly synergistic¹⁴, so that individual benefit increases with increasing community mask use. Further research is needed to expand the evidence base for the protective effect of cloth masks and in particular to identify the combinations of materials that maximize both their blocking and filtering effectiveness, as well as fit, comfort, durability, and consumer appeal. Adopting universal masking policies can help avert future lockdowns, especially if combined with other non-pharmaceutical interventions such as social distancing, hand hygiene, and adequate ventilation.

References

1. Moghadas SM, Fitzpatrick MC, Sah P, et al. The implications of silent transmission for the control of COVID-19 outbreaks. *Proc Natl Acad Sci U S A*. 2020;117(30):17513-17515.10.1073/pnas.2008373117. <https://www.ncbi.nlm.nih.gov/pubmed/32632012> [] .
2. Johansson MA, Quandelacy TM, Kada S, et al. Controlling COVID-19 requires preventing SARS-CoV-2 transmission from people without symptoms. *submitted*. 2020.
3. Lindsley WG, Blachere FM, Law BF, Beezhold DH, Noti JD. Efficacy of face masks, neck gaiters and face shields for reducing the expulsion of simulated cough-generated aerosols. *medRxiv*. 2020. <https://doi.org/10.1101/2020.10.05.20207241> [] .
4. Fischer EP, Fischer MC, Grass D, Henrion I, Warren WS, Westman E. Low-cost measurement of face mask efficacy for filtering expelled droplets during speech. *Sci Adv*. 2020;6(36).10.1126/sciadv.abd3083. <https://www.ncbi.nlm.nih.gov/pubmed/32917603> [] .
5. Verma S, Dhanak M, Frankenfield J. Visualizing the effectiveness of face masks in obstructing respiratory jets. *Phys Fluids* (1994). 2020;32(6):061708.10.1063/5.0016018. <https://www.ncbi.nlm.nih.gov/pubmed/32624649> [] .
6. Bahl P, Bhattacharjee S, de Silva C, Chughtai AA, Doolan C, MacIntyre CR. Face coverings and mask to minimise droplet dispersion and aerosolisation: a video case study. *Thorax*. 2020;75(11):1024-1025.10.1136/thoraxjnl-2020-215748. <https://www.ncbi.nlm.nih.gov/pubmed/32709611> [] .
7. Davies A, Thompson KA, Giri K, Kafatos G, Walker J, Bennett A. Testing the efficacy of homemade masks: would they protect in an influenza pandemic? *Disaster Med Public Health Prep*. 2013;7(4):413-418.10.1017/dmp.2013.43. <https://www.ncbi.nlm.nih.gov/pubmed/24229526> [] .
8. Leung NHL, Chu DKW, Shiu EYC, et al. Respiratory virus shedding in exhaled breath and efficacy of face masks. *Nature Medicine*. 2020;26(5):676-680. <https://dx.doi.org/10.1038/s41591-020-0843-2> [] .
9. Bandiera L, Pavar G, Pisetta G, et al. Face coverings and respiratory tract droplet dispersion. *medRxiv*. 2020.10.1101/2020.08.11.20145086. <https://doi.org/10.1101/2020.08.11.20145086> [] .

10. Alsved M, Matamis A, Bohlin R, et al. Exhaled respiratory particles during singing and talking. *Aerosol Sci Technol.* 2020;10.1080/02786826.2020.1812502.
11. Asadi S, Wexler AS, Cappa CD, Barreda S, Bouvier NM, Ristenpart WD. Aerosol emission and superemission during human speech increase with voice loudness. *Sci Rep.* 2019;9(1):2348.10.1038/s41598-019-38808-z. <https://www.ncbi.nlm.nih.gov/pubmed/30787335> [2].
12. Morawska L, Johnson GR, Ristovski ZD, et al. Size distribution and sites of origin of droplets expelled from the human respiratory tract during expiratory activities. *Aerosol Sci.* 2009;40(3):256-269. <https://www.sciencedirect.com/science/article/pii/S0021850208002036> [2].
13. Abkarian M, Mendez S, Xue N, Yang F, Stone HA. Speech can produce jet-like transport relevant to asymptomatic spreading of virus. *Proc Natl Acad Sci U S A.* 2020;117(41):25237-25245.10.1073/pnas.2012156117. <https://www.ncbi.nlm.nih.gov/pubmed/32978297> [2].
14. Ueki H, Furusawa Y, Iwatsuki-Horimoto K, et al. Effectiveness of Face Masks in Preventing Airborne Transmission of SARS-CoV-2. *mSphere.* 2020;5(5).10.1128/mSphere.00637-20. <https://www.ncbi.nlm.nih.gov/pubmed/33087517> [2].
15. Rodriguez-Palacios A, Cominelli F, Basson AR, Pizarro TT, Illic S. Textile Masks and Surface Covers-A Spray Simulation Method and a "Universal Droplet Reduction Model" Against Respiratory Pandemics. *Front Med (Lausanne).* 2020;7:260.10.3389/fmed.2020.00260. <https://www.ncbi.nlm.nih.gov/pubmed/32574342> [2].
16. Viola I.M., Peterson B., Pisetta G., et al. *Face coverings, aerosol dispersion and mitigation of virus transmission risk.* 2020. <https://arxiv.org/abs/2005.10720> [2].
17. Rengasamy S, Eimer B, Shaffer RE. Simple respiratory protection-evaluation of the filtration performance of cloth masks and common fabric materials against 20-1000 nm size particles. *Ann Occup Hyg.* 2010;54(7):789-798.10.1093/annhyg/meq044. <https://www.ncbi.nlm.nih.gov/pubmed/20584862> [2].
18. Konda A, Prakash A, Moss GA, Schmoldt M, Grant GD, Guha S. Aerosol Filtration Efficiency of Common Fabrics Used in Respiratory Cloth Masks. *ACS Nano.* 2020;14(5):6339-6347.10.1021/acsnano.0c03252. <https://www.ncbi.nlm.nih.gov/pubmed/32329337> [2].
19. Long KD, Woodburn EV, Berg IC, Chen V, Scott WS. Measurement of filtration efficiencies of healthcare and consumer materials using modified respirator fit tester setup. *PLoS One.* 2020;15(10):e0240499.10.1371/journal.pone.0240499. <https://www.ncbi.nlm.nih.gov/pubmed/33048980> [2].
20. O'Kelly E, Pirog S, Ward J, Clarkson PJ. Ability of fabric face mask materials to filter ultrafine particles at coughing velocity. *BMJ Open.* 2020;10(9):e039424.10.1136/bmjopen-2020-039424. <https://www.ncbi.nlm.nih.gov/pubmed/32963071> [2].
21. Aydin O, Emon B, Cheng S, Hong L, Chamorro LP, Saif MTA. Performance of fabrics for home-made masks against the spread of COVID-19 through droplets: A quantitative mechanistic study. *Extreme Mech Lett.* 2020;40:100924.10.1016/j.eml.2020.100924. <https://www.ncbi.nlm.nih.gov/pubmed/32835043> [2].
22. Bhattacharjee S, Bahl P, Chughtai AA, MacIntyre CR. Last-resort strategies during mask shortages: optimal design features of cloth masks and decontamination of disposable masks during the COVID-19 pandemic. *BMJ Open Respir Res.* 2020;7(1).10.1136/bmjjresp-2020-000698. <https://www.ncbi.nlm.nih.gov/pubmed/32913005> [2].
23. Maurer L, Peris D, Kerl J, Guenther F, Koehler D, Dellweg D. Community Masks During the SARS-CoV-2 Pandemic: Filtration Efficacy and Air Resistance. *J Aerosol Med Pulm Drug Deliv.* 2020.10.1089/jamp.2020.1635. <https://www.ncbi.nlm.nih.gov/pubmed/32975460> [2].
24. Hill WC, Hull MS, MacCuspie RI. Testing of Commercial Masks and Respirators and Cotton Mask Insert Materials using SARS-CoV-2 Virion-Sized Particulates: Comparison of Ideal Aerosol Filtration Efficiency versus Fitted Filtration Efficiency. *Nano Lett.* 2020;20(10):7642-7647.10.1021/acs.nanolett.0c03182. <https://www.ncbi.nlm.nih.gov/pubmed/32986441> [2].
25. Whiley H, Keerthirathne TP, Nisar MA, White MAF, Ross KE. Viral Filtration Efficiency of Fabric Masks Compared with Surgical and N95 Masks. *Pathogens.* 2020;9(9).10.3390/pathogens9090762. <https://www.ncbi.nlm.nih.gov/pubmed/32957638> [2].
26. Hao W, Parasch A, Williams S, et al. Filtration performances of non-medical materials as candidates for manufacturing facemasks and respirators. *Int J Hyg Environ Health.* 2020;229:113582.10.1016/j.ijheh.2020.113582. <https://www.ncbi.nlm.nih.gov/pubmed/32917368> [2].
27. van der Sande M, Teunis P, Sabel R. Professional and home-made face masks reduce exposure to respiratory infections among the general population. *PLoS One.* 2008;3(7):e2618.10.1371/journal.pone.0002618. <https://www.ncbi.nlm.nih.gov/pubmed/18612429> [2].
28. Chu DK, Akl EA, Duda S, et al. Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: a systematic review and meta-analysis. *Lancet.* 2020.10.1016/S0140-6736(20)31142-9. [https://doi.org/10.1016/S0140-6736\(20\)31142-9](https://doi.org/10.1016/S0140-6736(20)31142-9) [2].

29. Clase CM, Fu EL, Ashur A, et al. Forgotten Technology in the COVID-19 Pandemic: Filtration Properties of Cloth and Cloth Masks-A Narrative Review. *Mayo Clin Proc*. 2020;95(10):2204-2224.10.1016/j.mayocp.2020.07.020. <https://www.ncbi.nlm.nih.gov/pubmed/33012350> ↗.

30. Zhao M, Liao L, Xiao W, et al. Household Materials Selection for Homemade Cloth Face Coverings and Their Filtration Efficiency Enhancement with Triboelectric Charging. *Nano Lett*. 2020;20(7):5544-5552.10.1021/acs.nanolett.0c02211. <https://www.ncbi.nlm.nih.gov/pubmed/32484683> ↗.

31. Parlin AF, Stratton SM, Culley TM, Guerra PA. A laboratory-based study examining the properties of silk fabric to evaluate its potential as a protective barrier for personal protective equipment and as a functional material for face coverings during the COVID-19 pandemic. *PLoS One*. 2020;15(9):e0239531.10.1371/journal.pone.0239531. <https://www.ncbi.nlm.nih.gov/pubmed/32946526> ↗.

32. Hendrix MJ, Walde C, Findley K, Trotman R. Absence of Apparent Transmission of SARS-CoV-2 from Two Stylists After Exposure at a Hair Salon with a Universal Face Covering Policy – Springfield, Missouri, May 2020. *MMWR Morb Mortal Wkly Rep*. 2020;69(28):930-932.10.15585/mmwr.mm6928e2. <https://www.ncbi.nlm.nih.gov/pubmed/32673300> ↗.

33. Wang Y, Tian H, Zhang L, et al. Reduction of secondary transmission of SARS-CoV-2 in households by face mask use, disinfection and social distancing: a cohort study in Beijing, China. *BMJ Glob Health*. 2020;5(5).10.1136/bmjgh-2020-002794. <https://www.ncbi.nlm.nih.gov/pubmed/32467353> ↗.

34. Doung-Ngern P, Suphanchaimat R, Panjangampatthana A, et al. Case-Control Study of Use of Personal Protective Measures and Risk for Severe Acute Respiratory Syndrome Coronavirus 2 Infection, Thailand. *Emerg Infect Dis*. 2020;26(11).10.3201/eid2611.203003. <https://www.ncbi.nlm.nih.gov/pubmed/32931726> ↗.

35. Payne DC, Smith-Jeffcoat SE, Nowak G, et al. SARS-CoV-2 Infections and Serologic Responses from a Sample of U.S. Navy Service Members – USS Theodore Roosevelt, April 2020. *MMWR Morb Mortal Wkly Rep*. 2020;69(23):714-721.10.15585/mmwr.mm6923e4. <https://www.ncbi.nlm.nih.gov/pubmed/32525850> ↗.

36. Schwartz KL, Murti M, Finkelstein M, et al. Lack of COVID-19 transmission on an international flight. *Cmaj*. 2020;192(15):E410.10.1503/cmaj.75015. <https://www.ncbi.nlm.nih.gov/pubmed/32392504> ↗.

37. Freedman DO, Wilder-Smith A. In-flight Transmission of SARS-CoV-2: a review of the attack rates and available data on the efficacy of face masks. *J Travel Med*. 2020.10.1093/jtm/taaa178. <https://www.ncbi.nlm.nih.gov/pubmed/32975554> ↗.

38. Wang X, Ferro EG, Zhou G, Hashimoto D, Bhatt DL. Association Between Universal Masking in a Health Care System and SARS-CoV-2 Positivity Among Health Care Workers. *JAMA*. 2020.10.1001/jama.2020.12897. <https://www.ncbi.nlm.nih.gov/pubmed/32663246> ↗.

39. Mitze T., Kosfeld R., Rode J., Wälde K. *Face Masks Considerably Reduce COVID-19 Cases in Germany: A Synthetic Control Method Approach*. IZA – Institute of Labor Economics (Germany);2020.ISSN: 2365-9793, DP No. 13319. <http://ftp.iza.org/dp13319.pdf> ↗ ↘

40. Gallaway MS, Rigler J, Robinson S, et al. Trends in COVID-19 Incidence After Implementation of Mitigation Measures – Arizona, January 22-August 7, 2020. *MMWR Morb Mortal Wkly Rep*. 2020;69(40):1460-1463.10.15585/mmwr.mm6940e3. <https://www.ncbi.nlm.nih.gov/pubmed/33031366> ↗.

41. Lyu W, Wehby GL. Community Use Of Face Masks And COVID-19: Evidence From A Natural Experiment Of State Mandates In The US. *Health Aff (Millwood)*. 2020;39(8):1419-1425.10.1377/hlthaff.2020.00818. <https://www.ncbi.nlm.nih.gov/pubmed/32543923> ↗.

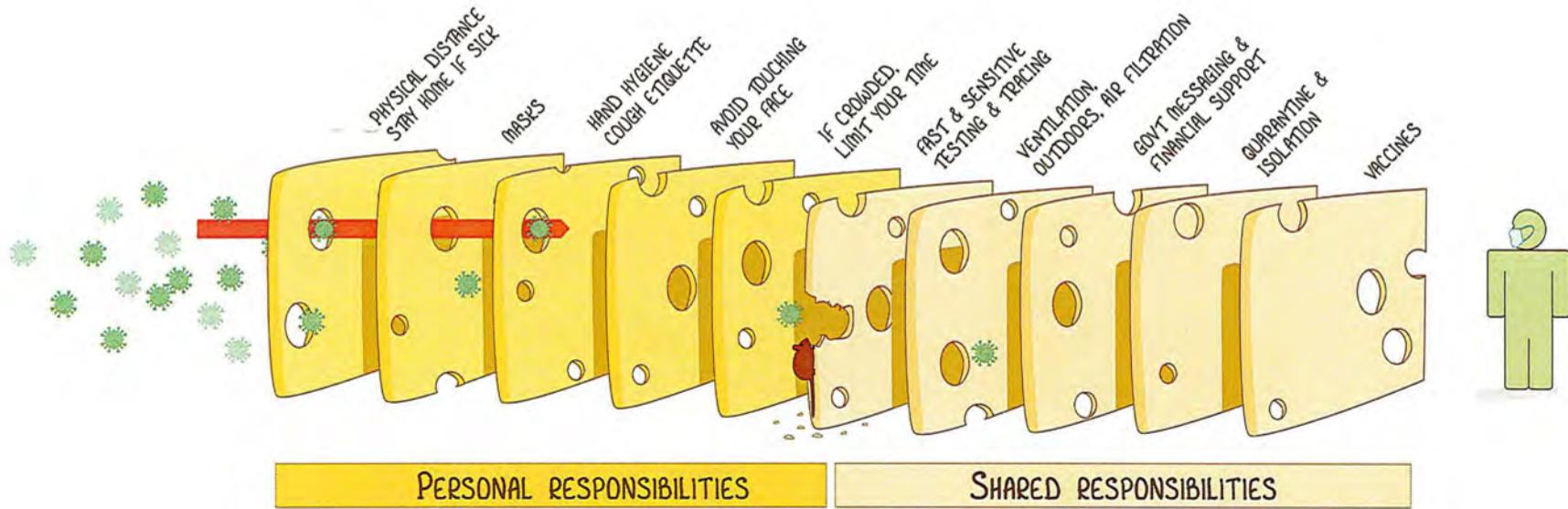
42. Hatzius J, Struyven D, Rosenberg I. Face Masks and GDP. *Goldman Sachs Research* <https://www.goldmansachs.com/insights/pages/face-masks-and-gdp.html> ↗. Accessed July 8, 2020.

43. Karaivanov A, Lu S.E., Shigeoka H., Chen C., Pamplona S. *Face Masks, Public Policies And Slowing The Spread Of Covid-19: Evidence from Canada* National Bureau Of Economic Research 2020.Working Paper 27891. <http://www.nber.org/papers/w27891> ↗.

44. Chernozhukov V, Kasahara H, Schrimpf P. Causal Impact of Masks, Policies, Behavior on Early Covid-19 Pandemic in the U.S. *medRxiv*. 2020.10.1101/2020.05.27.20115139. <http://medrxiv.org/content/early/2020/05/29/2020.05.27.20115139.abstract> ↗.

45. Leffler CT, Ing EB, Lykins JD, Hogan MC, McKeown CA, Grzybowski A. Association of country-wide coronavirus mortality with demographics, testing, lockdowns, and public wearing of masks (updated August 4, 2020). *medRxiv*. 2020.10.1101/2020.05.22.20109231. <http://medrxiv.org/content/early/2020/05/25/2020.05.22.20109231.abstract> ↗.

Scientific Brief: Community Use of Cloth Masks to Control the Spread of SARS-CoV-2


<https://www.cdc.gov/coronavirus/2019-ncov/more/masking-science-sars-cov2.html>

November 17, 2020

THE SWISS CHEESE RESPIRATORY VIRUS PANDEMIC DEFENCE

RECOGNISING THAT NO SINGLE INTERVENTION IS PERFECT AT PREVENTING SPREAD

EACH INTERVENTION (LAYER) HAS IMPERFECTIONS (HOLES).

MULTIPLE LAYERS IMPROVE SUCCESS.

GLOBAL CENTER
FOR HEALTH SECURITY

IAN D PHACKAY
VIROLOGYDOWNUNDER.COM

WITH THANKS TO JODY LANARD, KATHERINE REDEN & THE UNI OF QLD
BASED ON THE SWISS CHEESE MODEL OF ACCIDENT CAUSATION, BY JAMES T REASON, 1990

VERSION 3.0
UPDATE: 24 OCT 2020

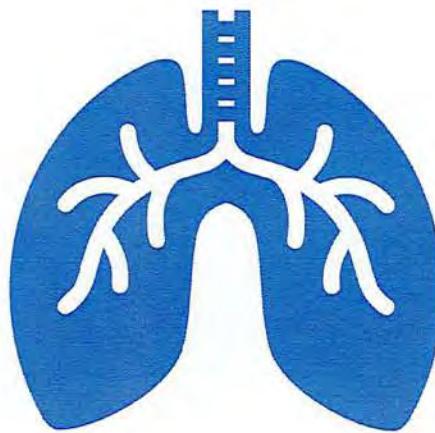
NOT EVERYONE WITH COVID-19 FEELS SICK

New report: 238 young adult U.S. service members on a naval aircraft carrier tested positive for a current or previous infection of COVID-19

1 out of 5 reported no symptoms

Practice social distancing and wear face coverings to **slow the spread**

CDC.GOV


bit.ly/MMWR6920

MMWR

GLOBAL CENTER
FOR HEALTH SECURITY

- SARS-CoV-2 infection is transmitted by respiratory droplets generated when people cough, sneeze, sing, talk, or breathe. CDC recommends community use of [masks](#) to prevent transmission of SARS-CoV-2.
- The community benefit of masking for SARS-CoV-2 control increases with increasing numbers of people using masks consistently and correctly.

GLOBAL CENTER
FOR HEALTH SECURITY

Source control

Aerosols

- Respirable Aerosol
 $\leq 2.5 \text{ to } 5 \mu\text{m}$
- Thoracic Aerosol
 $\leq 10 \text{ to } 15 \mu\text{m}$
- Inhalable Droplets
 $\leq 100 \mu\text{m}$

Inhalation Protection

D. K. Milton, *J Pediatric Infect Dis Soc* (2020),
[doi:10.1093/jpids/piaa079](https://doi.org/10.1093/jpids/piaa079).

GLOBAL CENTER
FOR HEALTH SECURITY

Source Control to Block Exhaled Virus

- Multi-layer cloth masks block exhaled respiratory particles,³⁻⁶ and the virus these particles carry.^{7,8} Cloth masks effectively block most large droplets (i.e., 20-30 microns and larger)⁹ and block the exhalation of fine droplets (also often referred to as aerosols) smaller than 10 microns.^{3,5,10-13}
- Multi-layer cloth masks both block up to 50-70% of fine droplets^{3,14} and limit the forward spread of those that are not captured.^{5,6,15,16}

GLOBAL CENTER
FOR HEALTH SECURITY

Source Control to Block Exhaled Virus (refs)

3. Lindsley WG, Blachere FM, Law BF, Beezhold DH, Noti JD. Efficacy of face masks, neck gaiters and face shields for reducing the expulsion of simulated cough-generated aerosols. *medRxiv*. 2020. <https://doi.org/10.1101/2020.10.05.20207241>external icon.
4. Fischer EP, Fischer MC, Grass D, Henrion I, Warren WS, Westman E. Low-cost measurement of face mask efficacy for filtering expelled droplets during speech. *Sci Adv*. 2020;6(36):10.1126/sciadv.abd3083. <https://www.ncbi.nlm.nih.gov/pubmed/32917603>external icon.
5. Verma S, Dhanak M, Frankenfield J. Visualizing the effectiveness of face masks in obstructing respiratory jets. *Phys Fluids* (1994). 2020;32(6):061708.10.1063/5.0016018. <https://www.ncbi.nlm.nih.gov/pubmed/32624649>external icon.
6. Bahl P, Bhattacharjee S, de Silva C, Chughtai AA, Doolan C, MacIntyre CR. Face coverings and mask to minimise droplet dispersion and aerosolisation: a video case study. *Thorax*. 2020;75(11):1024-1025.10.1136/thoraxjnl-2020-215748. <https://www.ncbi.nlm.nih.gov/pubmed/32709611>external icon.
7. Davies A, Thompson KA, Giri K, Kafatos G, Walker J, Bennett A. Testing the efficacy of homemade masks: would they protect in an influenza pandemic? *Disaster Med Public Health Prep*. 2013;7(4):413-418.10.1017/dmp.2013.43. <https://www.ncbi.nlm.nih.gov/pubmed/24229526>external icon.
8. Leung NHL, Chu DKW, Shiu EYC, et al. Respiratory virus shedding in exhaled breath and efficacy of face masks. *Nature Medicine*. 2020;26(5):676-680. <https://dx.doi.org/10.1038/s41591-020-0843-2>external icon.
9. Bandiera L, Pavar G, Pisetta G, et al. Face coverings and respiratory tract droplet dispersion. *medRxiv*. 2020.10.1101/2020.08.11.20145086. <https://doi.org/10.1101/2020.08.11.20145086>external icon.
10. Alsved M, Matamis A, Bohlin R, et al. Exhaled respiratory particles during singing and talking. *Aerosol Sci Technol*. 2020;10.1080/02786826.2020.1812502.
11. Asadi S, Wexler AS, Cappa CD, Barreda S, Bouvier NM, Ristenpart WD. Aerosol emission and superemission during human speech increase with voice loudness. *Sci Rep*. 2019;9(1):2348.10.1038/s41598-019-38808-z. <https://www.ncbi.nlm.nih.gov/pubmed/30787335>external icon.
12. Morawska L, Johnson GR, Ristovski ZD, et al. Size distribution and sites of origin of droplets expelled from the human respiratory tract during expiratory activities. *Aerosol Sci*. 2009;40(3):256-269. <https://www.sciencedirect.com/science/article/pii/S0021850208002036>external icon.
13. Abkarian M, Mendez S, Xue N, Yang F, Stone HA. Speech can produce jet-like transport relevant to asymptomatic spreading of virus. *Proc Natl Acad Sci U S A*. 2020;117(41):25237-25245.10.1073/pnas.2012156117. <https://www.ncbi.nlm.nih.gov/pubmed/32978297>external icon.
14. Ueki H, Furusawa Y, Iwatsuki-Horimoto K, et al. Effectiveness of Face Masks in Preventing Airborne Transmission of SARS-CoV-2. *mSphere*. 2020;5(5):10.1128/mSphere.00637-20. <https://www.ncbi.nlm.nih.gov/pubmed/33087517>external icon.
15. Rodriguez-Palacios A, Cominelli F, Basson AR, Pizarro TT, Ilic S. Textile Masks and Surface Covers-A Spray Simulation Method and a "Universal Droplet Reduction Model" Against Respiratory Pandemics. *Front Med (Lausanne)*. 2020;7:260.10.3389/fmed.2020.00260. <https://www.ncbi.nlm.nih.gov/pubmed/32574342>external icon.
16. Viola I.M., Peterson B., Pisetta G., et al. Face coverings, aerosol dispersion and mitigation of virus transmission risk. 2020. <https://arxiv.org/abs/2005.10720>external icon.

Filtration for Personal Protection

- Studies demonstrate that cloth mask materials can also reduce wearers' exposure to infectious droplets through filtration.^{14,17-31}

Filtration for Personal Protection (refs)

17. Rengasamy S, Eimer B, Shaffer RE. Simple respiratory protection—evaluation of the filtration performance of cloth masks and common fabric materials against 20–1000 nm size particles. *Ann Occup Hyg.* 2010;54(7):789–798. 10.1093/annhyg/meq044. <https://www.ncbi.nlm.nih.gov/pubmed/20584862> external icon.
18. Konda A, Prakash A, Moss GA, Schmoldt M, Grant GD, Guha S. Aerosol Filtration Efficiency of Common Fabrics Used in Respiratory Cloth Masks. *ACS Nano.* 2020;14(5):6339–6347. 10.1021/acsnano.0c03252. <https://www.ncbi.nlm.nih.gov/pubmed/32329337> external icon.
19. Long KD, Woodburn EV, Berg IC, Chen V, Scott WS. Measurement of filtration efficiencies of healthcare and consumer materials using modified respirator fit tester setup. *PLoS One.* 2020;15(10):e0240499. 10.1371/journal.pone.0240499. <https://www.ncbi.nlm.nih.gov/pubmed/33048980> external icon.
20. O'Kelly E, Pirog S, Ward J, Clarkson PJ. Ability of fabric face mask materials to filter ultrafine particles at coughing velocity. *BMJ Open.* 2020;10(9):e039424. 10.1136/bmjopen-2020-039424. <https://www.ncbi.nlm.nih.gov/pubmed/32963071> external icon.
21. Aydin O, Emon B, Cheng S, Hong L, Chamorro LP, Saif MTA. Performance of fabrics for home-made masks against the spread of COVID-19 through droplets: A quantitative mechanistic study. *Extreme Mech Lett.* 2020;40:100924. 10.1016/j.eml.2020.100924. <https://www.ncbi.nlm.nih.gov/pubmed/32835043> external icon.
22. Bhattacharjee S, Bahl P, Chughtai AA, MacIntyre CR. Last-resort strategies during mask shortages: optimal design features of cloth masks and decontamination of disposable masks during the COVID-19 pandemic. *BMJ Open Respir Res.* 2020;7(1). 10.1136/bmjresp-2020-000698. <https://www.ncbi.nlm.nih.gov/pubmed/32913005> external icon.
23. Maurer L, Peris D, Kerl J, Guenther F, Koehler D, Dellweg D. Community Masks During the SARS-CoV-2 Pandemic: Filtration Efficacy and Air Resistance. *J Aerosol Med Pulm Drug Deliv.* 2020. 10.1089/jamp.2020.1635. <https://www.ncbi.nlm.nih.gov/pubmed/32975460> external icon.
24. Hill WC, Hull MS, MacCuspie RI. Testing of Commercial Masks and Respirators and Cotton Mask Insert Materials using SARS-CoV-2 Virion-Sized Particulates: Comparison of Ideal Aerosol Filtration Efficiency versus Fitted Filtration Efficiency. *Nano Lett.* 2020;20(10):7642–7647. 10.1021/acs.nanolett.0c03182. <https://www.ncbi.nlm.nih.gov/pubmed/32986441> external icon.
25. Whiley H, Keerthirathne TP, Nisar MA, White MAF, Ross KE. Viral Filtration Efficiency of Fabric Masks Compared with Surgical and N95 Masks. *Pathogens.* 2020;9(9). 10.3390/pathogens9090762. <https://www.ncbi.nlm.nih.gov/pubmed/32957638> external icon.
26. Hao W, Parasch A, Williams S, et al. Filtration performances of non-medical materials as candidates for manufacturing facemasks and respirators. *Int J Hyg Environ Health.* 2020;229:113582. 10.1016/j.ijheh.2020.113582. <https://www.ncbi.nlm.nih.gov/pubmed/32917368> external icon.
27. van der Sande M, Teunis P, Sabel R. Professional and home-made face masks reduce exposure to respiratory infections among the general population. *PLoS One.* 2008;3(7):e2618. 10.1371/journal.pone.0002618. <https://www.ncbi.nlm.nih.gov/pubmed/18612429> external icon.
28. Chu DK, Akl EA, Duda S, et al. Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: a systematic review and meta-analysis. *Lancet.* 2020. 10.1016/S0140-6736(20)31142-9. [https://doi.org/10.1016/S0140-6736\(20\)31142-9](https://doi.org/10.1016/S0140-6736(20)31142-9) external icon.
29. Clase CM, Fu EL, Ashur A, et al. Forgotten Technology in the COVID-19 Pandemic: Filtration Properties of Cloth and Cloth Masks—A Narrative Review. *Mayo Clin Proc.* 2020;95(10):2204–2224. 10.1016/j.mayocp.2020.07.020. <https://www.ncbi.nlm.nih.gov/pubmed/33012350> external icon.
30. Zhao M, Liao L, Xiao W, et al. Household Materials Selection for Homemade Cloth Face Coverings and Their Filtration Efficiency Enhancement with Triboelectric Charging. *Nano Lett.* 2020;20(7):5544–5552. 10.1021/acs.nanolett.0c02211. <https://www.ncbi.nlm.nih.gov/pubmed/32484683> external icon.

Adopting universal masking policies can help avert future lockdowns, especially if combined with other non-pharmaceutical interventions such as social distancing, hand hygiene, adequate ventilation and community measures that limit congregate mask free activities.

Human Studies of Masking and SARS-CoV-2 Transmission

Two hair stylists with **COVID-19**
spent at least 15 minutes with 139 clients

EVERYONE WORE FACE COVERINGS NO CLIENTS ARE KNOWN TO BE INFECTED*

WEAR CLOTH FACE COVERINGS **CONSISTENTLY AND CORRECTLY** TO SLOW THE SPREAD OF COVID-19

*No clients reported symptoms; all 67 customers tested had negative tests

CDC.GOV

bit.ly/MMWR71420

MMWR

An investigation of a high-exposure event, in which 2 symptomatically ill hair stylists interacted for an average of 15 minutes with each of 139 clients during an 8-day period, found that none of the 67 clients who subsequently consented to an interview and testing developed infection. The stylists and all clients universally wore masks in the salon as required by local ordinance and company policy at the time.³²

Human Studies of Masking and SARS-CoV-2 Transmission

Table 1 Continued

Primary cases	Total (n (%)) (n=124)	Families without transmission (n (%)) (n=83)	Families with transmission (n (%) (n=41)	P value	Unadjusted OR (95% CI)
Unlikely	79 (63.7)	48 (57.8)	31 (75.6)	0.06	2.26 (0.98 to 5.21)
Knowledge of their own infectiousness after illness onset	–	–	–	–	–
Likely	84 (67.7)	62 (74.7)	22 (53.7)	–	Ref
Unlikely	40 (32.3)	21 (25.3)	19 (46.3)	0.02	2.55 (1.16 to 5.61)
Wear mask at home after illness onset¶	–	–	–	–	–
Never	41 (33.1)	24 (28.9)	17 (41.5)	–	Ref
Sometimes	37 (29.8)	21 (25.3)	16 (39.0)	0.76	1.15 (0.46 to 2.87)
All the time	46 (37.1)	38 (45.8)	8 (19.5)	0.02	0.30 (0.11 to 0.82)

In a study of 124 Beijing households with ≥ 1 laboratory-confirmed case of SARS-CoV-2 infection, mask use by the index patient and family contacts before the index patient developed symptoms reduced secondary transmission within the households by 79%.³³

Human Studies of Masking and SARS-CoV-2 Transmission

Table 1. Factors associated with coronavirus disease among persons followed through contract tracing, Thailand, March–April 2020*

Factors	COVID-19 cases, no. (%), N = 211†	Controls, no. (%), N = 839†	Crude odds ratio (95% CI)‡	p value	Adjusted odds ratio (95% CI)‡	p value
Sex						
F	n = 211 65 (30.8)	n = 838 404 (48.2)	Referent	0.52	Referent	0.37
M	146 (69.2)	434 (51.8)	0.83 (0.47–1.46)		0.76 (0.41–1.41)	
Age group, y						
≤15	n = 211 6 (2.8)	n = 829 49 (5.9)	0.65 (0.17–2.48)	0.29	0.57 (0.15–2.21)	0.21
>15–40	94 (44.5)	435 (52.5)	Referent		Referent	
>40–65	98 (46.4)	302 (36.4)	1.65 (0.91–2.97)		1.77 (0.94–3.32)	
>65	13 (6.2)	43 (5.0)	1.29 (0.33–5.07)		0.97 (0.22–4.24)	
Compliance with mask-wearing††	n = 210	n = 823				
Not wearing a mask	102 (48.6)	500 (60.7)	Referent	<0.001	Referent	0.006
Wearing a mask sometimes	79 (37.6)	125 (15.2)	0.75 (0.37–1.52)		0.87 (0.41–1.84)	
Always wearing a mask	29 (13.8)	198 (24.1)	0.16 (0.07–0.36)		0.23 (0.09–0.60)	

A retrospective case-control study from Thailand documented that, among more than 1,000 persons interviewed as part of contact tracing investigations, those who reported having always worn a mask during high-risk exposures experienced a greater than 70% reduced risk of acquiring infection compared with persons who did not wear masks under these circumstances.³⁴

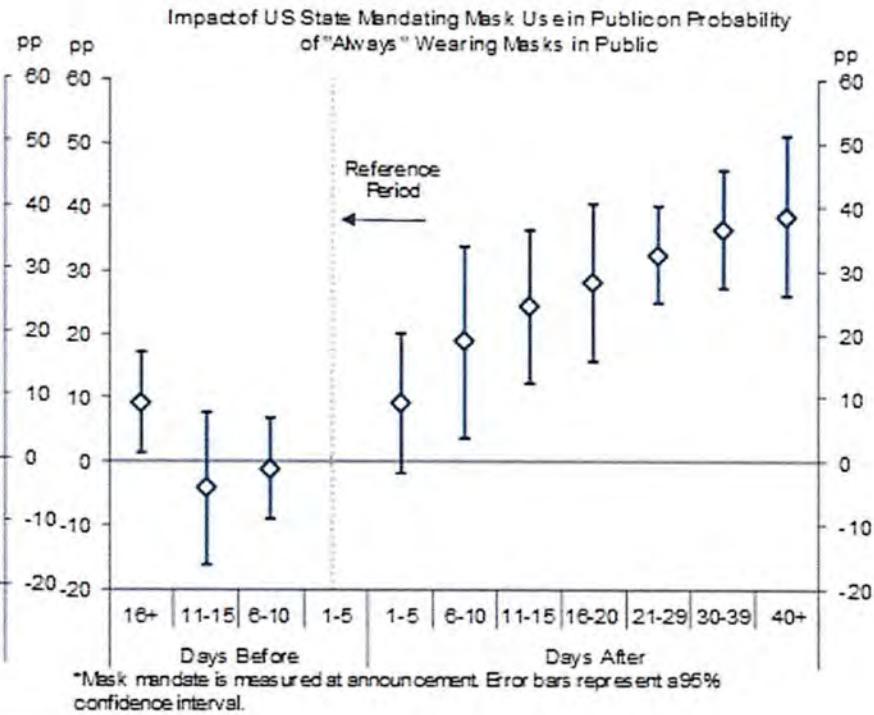
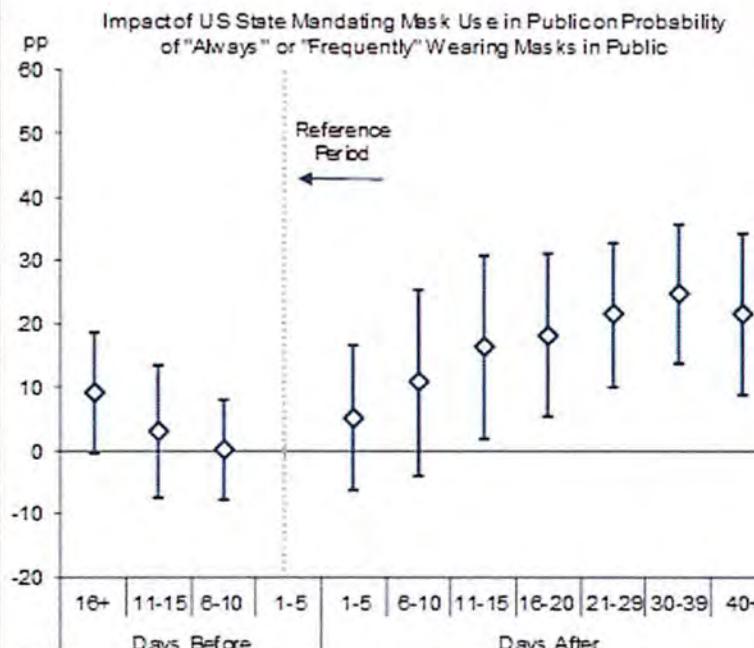
Human Studies of Masking and SARS-CoV-2 Transmission

TABLE. (Continued) Comparison of U.S. Navy service members with and without previous or current SARS-CoV-2 infection (N = 382) — USS Theodore Roosevelt, April 2020

Characteristic	No. (%)		
	Current or previous SARS-CoV-2 infection* (N = 238)	No evidence of SARS-CoV-2 infection (N = 144)	Infection versus no infection OR (95% CI)†
Number of symptoms			
1–3	51 (26.3)	49 (54.4)	Referent
4–5	37 (19.1)	13 (14.4)	2.74 (1.30–5.75)§
6–8	50 (25.8)	16 (17.8)	3.00 (1.51–5.96)§
>8	56 (28.9)	12 (13.3)	4.48 (2.15–9.37)§
Still symptomatic at time of survey (n = 275)			
Yes	65 (34.0)	24 (28.6)	1.29 (0.74–2.26)
No	126 (66.0)	60 (71.4)	Referent
Duration >1 week (n = 186)	70 (55.6)	29 (48.3)	1.34 (0.72–2.47)
Reported prevention behaviors			
Increased hand washing	218 (62.1)	133 (37.9)	0.90 (0.42–1.94)
Hand sanitizer use	219 (61.5)	137 (38.5)	0.59 (0.24–1.44)
Avoiding common areas	78 (53.8)	67 (46.2)	0.56 (0.37–0.86)§
Face covering use	158 (55.8)	125 (44.2)	0.30 (0.17–0.52)§
Increased workspace cleaning	195 (63.5)	112 (36.5)	1.30 (0.78–2.16)
Increased berthing cleaning	156 (61.9)	96 (38.1)	0.95 (0.61–1.47)
Increased distance from others	105 (54.7)	87 (45.3)	0.52 (0.34–0.79)§

- A study of an outbreak aboard the USS Theodore Roosevelt, an environment notable for congregate living quarters and close working environments, found that use of face coverings on-board was associated with a 70% reduced risk.³⁵

Human Studies of Masking and SARS-CoV-2 Transmission

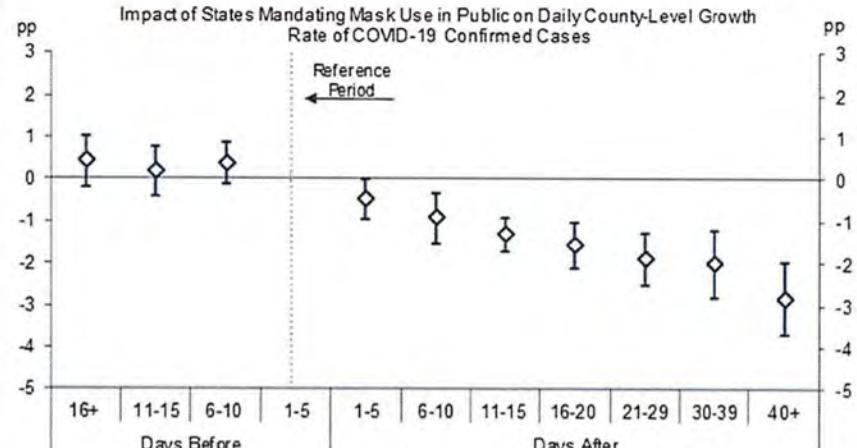


Seven studies have confirmed the benefit of universal masking in community level analyses: in a unified hospital system,³⁸ a German city,³⁹ a U.S. state,⁴⁰ a panel of 15 U.S. states and Washington, D.C.,^{41,42} as well as both Canada⁴³ and the U.S.⁴⁴ nationally.

Each analysis demonstrated that, following directives from organizational and political leadership for universal masking, new infections fell significantly. Two of these studies^{42,44} and an additional analysis of data from 200 countries that included the U.S.⁴⁵ also demonstrated reductions in mortality.

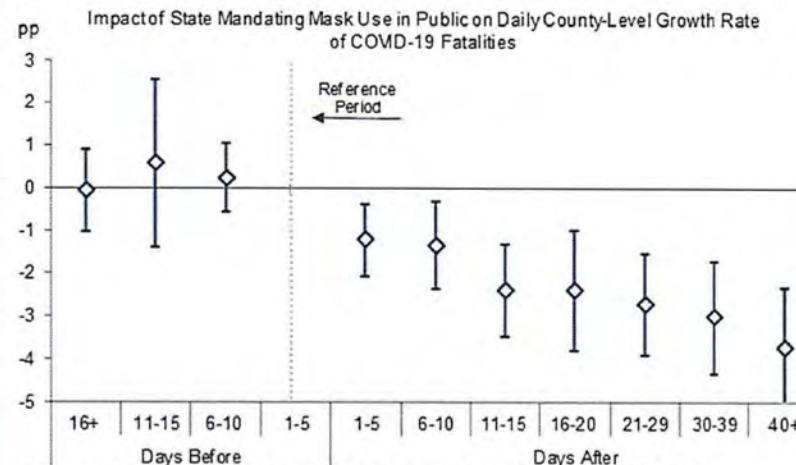
An economic analysis using U.S. data found that, given these effects, increasing universal masking by 15% could prevent the need for lockdowns and reduce associated losses of up to \$1 trillion or about 5% of gross domestic product.⁴²

Mandates increase number of people wearing masks

Exhibit 4: Mask Mandates Raise the Percentage of People Who "Always" or "Frequently" Wear Masks by Around 25pp in the 30+ Days After Signing



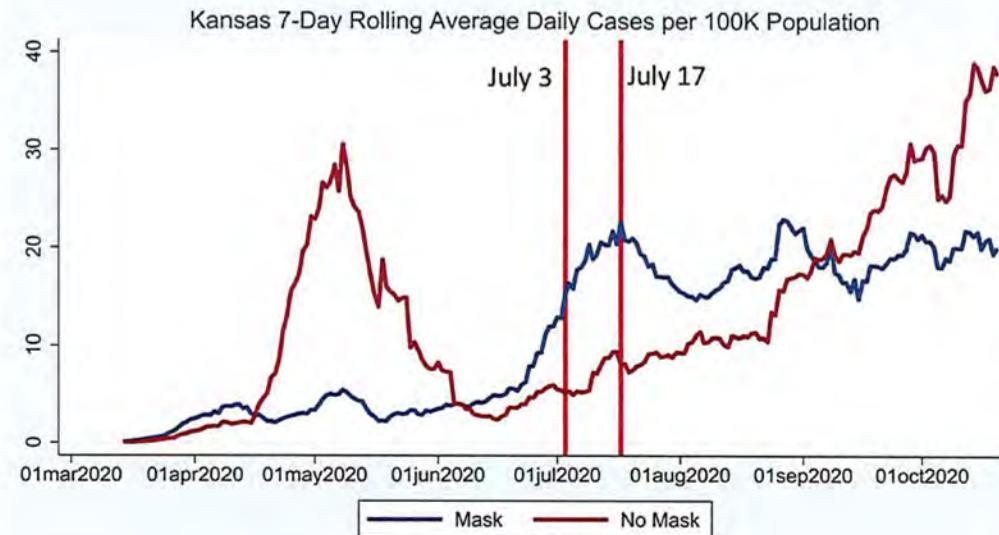
Mandates result in reduction of cases and fatalities



GLOBAL CENTER
FOR HEALTH SECURITY

Exhibit 5: Mask Mandates Are Associated with Large Declines in COVID-19 Case and Fatality Rates

*Mask mandate is measured at announcement. Error bars represent a 95% confidence interval

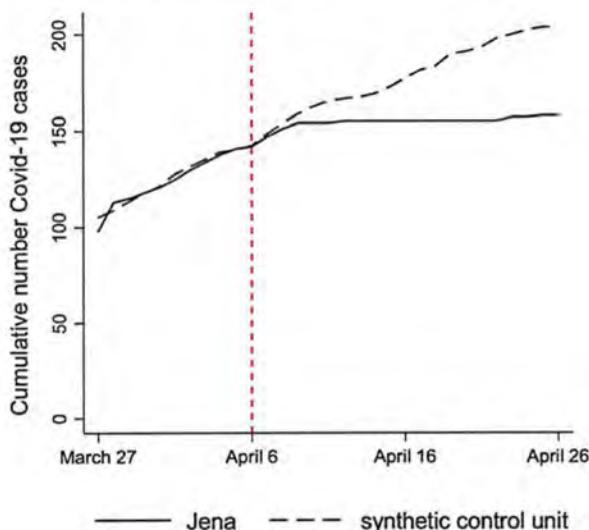


*Mask mandate is measured at announcement. Error bars represent a 95% confidence interval

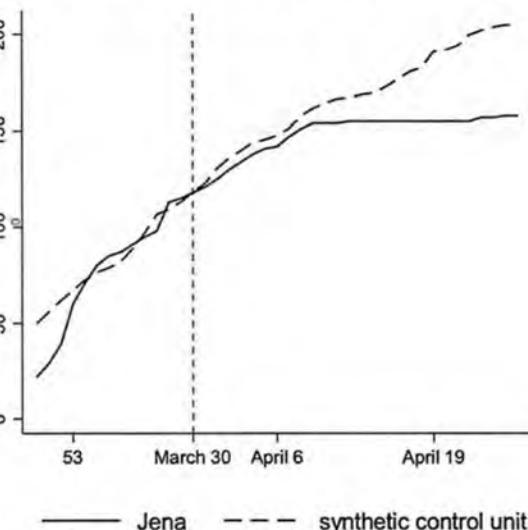
Source: YouGov, Goldman Sachs Global Investment Research

Kansas 7-Day Rolling Average Daily Cases per 100K Population

- Counties with a mask mandate saw a decrease starting 14 days after the mandate
- New spikes afterwards despite mandate
- Mask counties “stationary”
- No-Mask counties steadily increasing



Carlos Zambrana, PhD & Donna K. Ginther PhD


From: U of Kansas Institute for Policy and Social Research

German community mask ordinance comparison

Panel A: Introduction of face masks on April 6

Panel B: Announcement/Start of campaign on March 30

Face masks reduced the cumulative number of registered Covid-19 cases between 2.3% and 13% over a period of 10 days after they became compulsory. Assessing the credibility of the various estimates, we conclude that face masks reduce the daily growth rate of reported infections by around 40%.

Mitze, Kosfeld, Rode, Wälde. *Face Masks Considerably Reduce COVID-19 Cases in Germany: A Synthetic Control Method Approach*. IZA – Institute of Labor Economics Bonn, Germany. JUNE 2020

Human Studies of Masking and SARS-CoV-2 Transmission (refs)

32. Hendrix MJ, Walde C, Findley K, Trotman R. Absence of Apparent Transmission of SARS-CoV-2 from Two Stylists After Exposure at a Hair Salon with a Universal Face Covering Policy – Springfield, Missouri, May 2020. *MMWR Morb Mortal Wkly Rep.* 2020;69(28):930-932.10.15585/mmwr.mm6928e2. <https://www.ncbi.nlm.nih.gov/pubmed/32673300>external icon.
33. Wang Y, Tian H, Zhang L, et al. Reduction of secondary transmission of SARS-CoV-2 in households by face mask use, disinfection and social distancing: a cohort study in Beijing, China. *BMJ Glob Health.* 2020;5(5).10.1136/bmigh-2020-002794. <https://www.ncbi.nlm.nih.gov/pubmed/32467353>external icon.
34. Doung-Ngern P, Suphanchaimat R, Panjangampatthana A, et al. Case-Control Study of Use of Personal Protective Measures and Risk for Severe Acute Respiratory Syndrome Coronavirus 2 Infection, Thailand. *Emerg Infect Dis.* 2020;26(11).10.3201/eid2611.203003. <https://www.ncbi.nlm.nih.gov/pubmed/32931726>external icon.
35. Payne DC, Smith-Jeffcoat SE, Nowak G, et al. SARS-CoV-2 Infections and Serologic Responses from a Sample of U.S. Navy Service Members – USS Theodore Roosevelt, April 2020. *MMWR Morb Mortal Wkly Rep.* 2020;69(23):714-721.10.15585/mmwr.mm6923e4. <https://www.ncbi.nlm.nih.gov/pubmed/32525850>external icon.
36. Schwartz KL, Murti M, Finkelstein M, et al. Lack of COVID-19 transmission on an international flight. *Cmaj.* 2020;192(15):E410.10.1503/cmaj.75015. <https://www.ncbi.nlm.nih.gov/pubmed/32392504>external icon.
37. Freedman DO, Wilder-Smith A. In-flight Transmission of SARS-CoV-2: a review of the attack rates and available data on the efficacy of face masks. *J Travel Med.* 2020.10.1093/jtm/taaa178. <https://www.ncbi.nlm.nih.gov/pubmed/32975554>external icon.
38. Wang X, Ferro EG, Zhou G, Hashimoto D, Bhatt DL. Association Between Universal Masking in a Health Care System and SARS-CoV-2 Positivity Among Health Care Workers. *JAMA.* 2020.10.1001/jama.2020.12897. <https://www.ncbi.nlm.nih.gov/pubmed/32663246>external icon.
39. Mitze T., Kosfeld R., Rode J., Wälde K. *Face Masks Considerably Reduce COVID-19 Cases in Germany: A Synthetic Control Method Approach.* IZA – Institute of Labor Economics (Germany);2020.ISSN: 2365-9793, DP No. 13319. <http://ftp.iza.org/dp13319.pdf>external icon
40. Gallaway MS, Rigler J, Robinson S, et al. Trends in COVID-19 Incidence After Implementation of Mitigation Measures – Arizona, January 22–August 7, 2020. *MMWR Morb Mortal Wkly Rep.* 2020;69(40):1460-1463.10.15585/mmwr.mm6940e3. <https://www.ncbi.nlm.nih.gov/pubmed/33031366>external icon.
41. Lyu W, Wehby GL. Community Use Of Face Masks And COVID-19: Evidence From A Natural Experiment Of State Mandates In The US. *Health Aff (Millwood).* 2020;39(8):1419-1425.10.1377/hlthaff.2020.00818. <https://www.ncbi.nlm.nih.gov/pubmed/32543923>external icon.
42. Hatzis J, Struyven D, Rosenberg I. Face Masks and GDP. *Goldman Sachs Research*<https://www.goldmansachs.com/insights/pages/face-masks-and-gdp.html>external icon. Accessed July 8, 2020.
43. Karaivanov A., Lu S.E., Shigeoka H., Chen C., Pamplona S. *Face Masks, Public Policies And Slowing The Spread Of Covid-19: Evidence from Canada* National Bureau Of Economic Research 2020. Working Paper 27891. <http://www.nber.org/papers/w27891>external icon.
44. Chernozhukov V, Kasahara H, Schrimpf P. Causal Impact of Masks, Policies, Behavior on Early Covid-19 Pandemic in the U.S. *medRxiv.* 2020.10.1101/2020.05.27.20115139. <http://medrxiv.org/content/early/2020/05/29/2020.05.27.20115139.abstract>external icon.
45. Leffler CT, Ing EB, Lykins JD, Hogan MC, McKeown CA, Grzybowski A. Association of country-wide coronavirus mortality with demographics, testing, lockdowns, and public wearing of masks (updated August 4, 2020). *medRxiv.* 2020.10.1101/2020.05.22.20109231. <http://medrxiv.org/content/early/2020/05/25/2020.05.22.20109231.abstract>external icon.

↗ Nebraska health care workers signed letter asking for your help

Published November 17, 2020

Ultrasound technician Amber Olstad, left, and nurse Dani Christiansen take care of patients in 7UT, one of the 10 COVID-19 units at Nebraska Medical Center.

University of Nebraska Medical Center (UNMC) pulmonary and critical care medicine fellows Christopher Miller, DO, Thomas Marston, MD, and Nebraska Medicine critical care physician Daniel Hershberger, MD, drafted the letter below. They distributed it to some colleagues, hoping to add signatures alongside their own. The letter quickly gained attention,

and as of this publication, it has been signed by 1,700+ doctors and nurses.

Fellow Nebraskans,

In our lifetime, hospitals in Nebraska have always answered the call to provide high-quality health care to our patients. We have never had to imagine a time when hospitals could not provide lifesaving care for the patients who come through our doors. We, the health care providers of Nebraska, are concerned that this unimaginable time is fast approaching. We are nearing a dangerous period of this pandemic and fear that many more lives will be lost without action from all Nebraskans.

Nebraska currently has one of the fastest-growing outbreaks of COVID-19 in the United States. We continue to add capacity to the hospitals. Currently, Nebraska Medicine has 10 units full of COVID-19 patients. We are not able to add more space and will soon not have the workforce to care for more patients. However, this dramatic climb in cases can be slowed. You can help us flatten the curve.

Wearing a mask is an effective way to help stop the spread of COVID-19. The Centers for Disease Control and Prevention (CDC) recently again showed that masks reduce the risk of spread to those around us and protect us from getting the virus. The data on mask use is clear – masks slow the transmission of COVID-19. We call on all Nebraskans to wear a mask anytime you leave your home, especially anytime you cannot socially distance from others.

We ask all Nebraskans to cut back on any unnecessary trips outside their homes. We need to socially distance to prevent the continued spread of COVID-19. Even people that do not show symptoms can still spread the virus. Social distancing can break this chain of transmission. We need to limit all gatherings to those just within our immediate households. Social distancing has economic impacts in our community, and we ask that Nebraskans support local businesses in any way you can through these challenging times.

No single health measure is 100% effective at stopping the spread of COVID. They must be used together. That is why we are asking all of you to take every action possible to limit the spread in our community and to save lives.

Your frontline health care workers are exhausted. We are scared that the hospitals won't have the space and people to meet the ever-growing demand. We are seeing many deaths and will continue to see many more. Nebraskans have always been strong and hardworking people who have never failed to help our neighbors in the most challenging times. We call on Nebraskans to rise up once again to do everything we can for our state's health and safety. We believe in the people of this state. Your actions can save lives. We need you to wear masks, practice social distancing and limit the size of social gatherings. The life you save may be your own. We need you all to help those health care workers who dedicate their lives to save yours.

Sincerely,

The following 1,700+ Nebraska Medicine and UNMC health care providers:

William Poulson, MD, vascular surgery fellow

Michael C. Wadman, MD, medical director, National Quarantine Unit; professor and chair, Department of Emergency Medicine

Christopher Miller, DO, MPH, MHA, pulmonary and critical care medicine fellow

Thomas Marston, MD, pulmonary and critical care medicine fellow

Maureen McElligott, MD, pulmonary and critical care medicine fellow

Grant Turner, MD, pulmonary and critical care medicine fellow

Joseph Lamar, MD, pulmonary and critical care medicine fellow

David E. Gannon, MD, FACP, FACP, critical care medical director; associate professor of medicine

Amol Patil, MD, associate professor of medicine

Keenan Taylor, MD, associate professor of medicine

Ross Davidson, DO, MS, pulmonary and critical care medicine fellow

Meilinh Thi, DO, associate professor of medicine

Eric Asbe, DO, pulmonary and critical care medicine fellow

Kelly Cawcett, MD, MS, associate director of infection control and hospital epidemiology; assistant professor of infectious diseases and critical care medicine

Bridget Boeckman, APRN, critical care supervisor

Bethany Tomasek, PA-C, critical care advanced practice provider

Mollie Brittan, MD, MS, pulmonary and critical care medicine fellow

Daniel Cramer, APRN, infectious diseases advanced practice provider; assistant professor of nursing

Jake West, DO, pulmonary and critical care medicine fellow

Elizabeth Beam, PhD, RN, education researcher; assistant professor

Risa Zimmerman, MBA, MPAS, PA-C, director of the Office of Advanced Practice

Lisa Hill, APRN, nephrology advanced practice provider

Kimberly Schultz, PA-C, gastroenterology and hepatology advanced practice provider

Samantha Jordan-Schaulis, APRN, CPNP, AC/PC, pediatric critical care medicine advanced practice provider supervisor

Jill M. Strahm, APRN, FNP-C, perioperative evaluation advanced practice provider

Kirsten Wertz, RN, MSN, instructor in the College of Nursing

Laura Fraynd, DNAP, CRNA, anesthesiology

T. Scott Diesing, MD, director of hospital neurology

Rachel Pawloski, APRN, pulmonology advanced practice provider

Nicolas Cortes-Penfield, MD, infectious diseases physician; assistant professor

Kate-Lynn Muir, DO, oncology and hematology fellow

Brian Benes, DO, chief resident in internal medicine

Brent Luedders, MD, chief resident in internal medicine

Gynae Bantz, CRNA, anesthesiology

Heather Strah, MD, medical director of the lung transplant program

John B Thornton, APRN-NP, critical care advanced practice provider

Rachel Johnson, MD, assistant professor of internal medicine and pediatrics

Brady Bulian, DO, internal medicine physician, division of hospital medicine; assistant professor

Ashley Ortiz, APRN-NP, critical care advanced practice provider

John H. Makari, MD, MHA, MA, section chief of pediatric urology in the division of urologic surgery; associate professor of surgery

Kirsten Kimbler, MD, DMD, oral and maxillofacial surgery resident

Austin Beck, DO, emergency medicine resident

Erin Panowicz, APRN-NP, trauma and critical care

Nate Anderson, MD, assistant professor of hospital medicine

Nicole Maschmeier, DNAP, CRNA, anesthesiology

Kylie Gunia, BSN, RN, CCRN, cardiovascular and neurological sciences intensive care units

Jordan M. Warchol, MD, MPH, assistant professor in the Department of Emergency Medicine

Jared Baxter, MD, assistant professor, College of Nursing West Division

Ellen Roberts, MD, FASA, professor and vice chair of clinical operations in the Department of Anesthesiology

Jennifer Uggan, DO, assistant professor in the Department of Anesthesiology

Julie Sundermeier, APRN-NP, neonatal nurse practitioner

Cynthia Hernandez, MD, assistant professor, Department of Emergency Medicine

LeAnn Holmes, DNP, APRN, FAANP, assistant professor; director of the Doctor of Nursing Practice program

Jennifer Leinicke, MD, MPH, FACS, FASCRS, assistant professor in the Department of Surgery

Andrew Ingemansen, MD, assistant professor in the Department of Anesthesiology

Sumin Zhou, PhD, professor in the Department of Radiation Oncology

Amy J. Hargrove, MD, MPH, surgical resident

Tiffany Olson, CRNA, associate director nurse anesthetists

Levi Zehr, MD, BSN, anesthesiology resident

Nicholas Thalken, DO, emergency medicine resident

Carl V. Smith, MD, FACOG, professor and chair of obstetrics and gynecology

By Wei Lyu and George L. Wehby

DOI: 10.1377/hlthaff.2020.00818
 HEALTH AFFAIRS 39,
 NO. 8 (2020): 1-7
 ©2020 Project HOPE—
 The People-to-People Health
 Foundation, Inc.

Community Use Of Face Masks And COVID-19: Evidence From A Natural Experiment Of State Mandates In The US

ABSTRACT State policies mandating public or community use of face masks or covers in mitigating novel coronavirus disease (COVID-19) spread are hotly contested. This study provides evidence from a natural experiment on effects of state government mandates in the US for face mask use in public issued by 15 states plus DC between April 8 and May 15. The research design is an event study examining changes in the daily county-level COVID-19 growth rates between March 31, 2020 and May 22, 2020. Mandating face mask use in public is associated with a decline in the daily COVID-19 growth rate by 0.9, 1.1, 1.4, 1.7, and 2.0 percentage-points in 1–5, 6–10, 11–15, 16–20, and 21+ days after signing, respectively. Estimates suggest as many as 230,000–450,000 COVID-19 cases possibly averted by May 22, 2020 by these mandates. The findings suggest that requiring face mask use in public might help in mitigating COVID-19 spread. [Editor's Note: This Fast Track Ahead Of Print article is the accepted version of the peer-reviewed manuscript. The final edited version will appear in an upcoming issue of *Health Affairs*.]

Wei Lyu is a research associate in the Department of Health Management and Policy, College of Public Health, University of Iowa, in Iowa City, Iowa.

George L. Wehby (george-wehby@uiowa.edu) is a professor in the Department of Health Management and Policy, College of Public Health, University of Iowa, and a research associate at the National Bureau of Economic Research.

One of the most contentious issues being debated worldwide in the response to the novel coronavirus disease (COVID-19) pandemic is the value of wearing masks or facial coverings in public settings.¹ A key factor fueling the debate is the limited direct evidence thus far on how much widespread community use would affect COVID-19 spread. However, there is now substantial evidence of asymptomatic transmission of COVID-19.^{2,3} For example, a recent study of antibodies in a sample of customers in grocery stores in New York State reported an infection rate of 14% by March 29 (projected to represent nearly 2.1 million cases), which substantially exceeds the number of confirmed COVID-19 cases.⁴ Moreover, all public health authorities call on symptomatic individuals to wear masks to reduce transmission risk. Even organizations that have not yet recommended widespread community use of facial masks for

COVID-19 mitigation (i.e. everyone without symptoms should use a face mask outside of their home), such as the World Health Organization, strongly recommend that symptomatic individuals wear them.⁵ Since mask wearing by infected individuals can reduce transmission risk, and because of the high proportion of asymptomatic infected individuals and transmissions, there appears to be a strong case for the effectiveness of widespread use of face masks in reducing the spread of COVID-19. However, there is no direct evidence thus far on the magnitude of such effects, especially at a population level.

Researchers have been reviewing evidence from previous randomized controlled trials for other respiratory illnesses examining mask use and types among individuals at higher risk of contracting infections (such as health care workers or individuals in infected households). Systematic reviews and meta-analyses of such studies have provided suggestive, although generally

weak, evidence.⁶ The estimates from the meta-analyses based on the randomized controlled trials suggest declines in transmission risk of influenza or influenza-like illnesses to mask wearers, although estimates are mostly statistically insignificant possibly due to small sample sizes or design limitations especially related to assessing compliance.⁷⁻⁹ There is also a relationship between increased adherence to mask use specifically and effectiveness of reducing transmission to mask wearers; in one randomized study of influenza transmission in infected households in Australia, transmission risk for mask wearers was lower with greater adherence.¹⁰ Further, the evidence is mixed from randomized studies on types of masks and risk of influenza-like illnesses transmission to mask wearers; for example, a recent systematic review and meta-analysis comparing N95 respirators versus surgical masks found a statistically insignificant decline in influenza risk with the N95-respirators.¹¹

Positions on widespread facial mask use have differed worldwide but are changing over time. In the US, public health authorities did not recommend widespread facial mask use in public at the start of the pandemic. The initially limited evidence on asymptomatic transmission and concern about mask shortages for health care workforce and individuals caring for patients contributed to that initial decision. On April 3, 2020, the Centers for Disease Control and Prevention (CDC) issued new guidance advising all individuals to wear cloth facial covers in public areas where close contact with others is unavoidable, citing new evidence on virus transmission from asymptomatic or pre-symptomatic individuals.¹² Guidelines differ between countries, and some including Germany, France, Italy, Spain, China, and South Korea have mandated use of face masks in public.¹³⁻¹⁶

This study adds complementary evidence to the literature on impacts of widespread community use of face masks on COVID-19 spread from a natural experiment based on whether states in the US have mandated the use of face masks in public for COVID-19 mitigation or not. Specifically, we identify the effects of mandating face mask use in public on daily COVID-19 growth rates based on differences in the timing and issuance of state mandates.

In the US, 15 states plus DC have issued mandates for face mask use in public between April 8 and May 15. We examine the effects of state mandates for use of face masks in public on the daily COVID-19 growth rate using an event study that examines the effects over different periods. We also consider the impact of mandates for mask use targeted only to employees in some work

settings, as opposed to community-wide mandates. This evidence is critical as states and countries worldwide begin to shift to “reopening” their economies and as foot traffic increases. Mandating public use of masks has become a socially and politically contentious issue, with multiple protests and even acts of violence directed against masked employees and those asking customers to wear face masks.¹⁷ Face cover recommendations and mandates are part of the current set of measures, following earlier social distancing measures such as school and non-essential business closures, bans on large gatherings, and shelter-in-place orders being considered by states and local governments, especially as regions of the country reopen. For example, most recently, Virginia started its phase one reopening on May 22, 2020 and required everyone in the state to wear face masks in public where people congregate.¹⁸ Therefore, it is critical to provide direct evidence on this question not only for public health authorities and governments but also for educating the public.

Study Data And Methods

DATA We collect information on statewide face covering mandate orders from public datasets on such policies and from searching and reviewing all state orders issued between April 1 and May 21, 2020. Our study focuses on state executive orders or directives signed by state governors that mandate use. Recommendations or guidelines from state departments of public health are not included as these largely follow the CDC guideline and may not necessarily add further information or impact. See online appendix A for more detailed description of the data sources and measuring the mandates.¹⁹

States differ in whether they require their citizens to wear face masks (covers) to limit COVID-19 spread or not. Between April 8 and May 15, governors of 15 states and the mayor of the District of Columbia (DC) have signed orders mandating all individuals who can medically tolerate the wearing of a face mask do so in public settings (e.g., public transportation, grocery stores, pharmacies, or other retail stores) where maintaining 6-feet of “social distance” may not always be practicable; these 15 states also have specific mandates requiring employees in certain professions to wear masks at all times while working. Besides these 15 states and DC, 20 additional states have employee-only mandates (but no community-wide mandate) requiring that some employees (e.g., close-contact services providers like barber shops and nail salons) wear a face mask at all times while providing services. The face mask defined in these orders primarily re-

fers to cloth face covering or non-medical masks. The state orders strongly discourage the use of any medical/surgical masks and N95 respirators, which should be reserved for health care workers and first responders. The orders also clearly specify that the face masks are not a replacement for any other social distancing protocols. Fifteen states have yet not issued public or employee mandates. Further information on dates is in appendix exhibit A1. Links to these state orders are in appendixes D and E.¹⁹

The main model uses publicly available daily county-level data of confirmed COVID-19 cases starting on March 25 through May 21.²⁰ The data covers all states plus DC, and the analytical sample includes 2,930 unique counties plus New York City (five boroughs combined). See appendix A for more detailed description of COVID-19 data.¹⁹

STATISTICAL ANALYSIS We employ an event study, which is generally similar to a difference-in-differences design, to examine whether statewide mandates to wear face masks in public affect the spread of COVID-19 based on the state variations noted above. This design allows us to estimate the effects in the context of a natural experiment: comparing the pre-post mandate changes in COVID-19 spread in the states with mandates to the states that did not pass these mandates over time. The model tests whether states issuing these mandates had differential pre-trends in COVID-19 rates before they were issued. This is a critical assumption of the validity of an event study that must be upheld under testing. In addition, the model allows us to control for a wide range of time-invariant differences between states and counties such as population density and socioeconomic and demographic factors, plus time-variant differences between states and counties such as other mitigation and social distancing policies in addition to state-level COVID-19 tests.

We estimate the effects of face cover mandates on the daily county-level COVID-19 growth rate, which is the difference in the natural log of cumulative COVID-19 cases on a given day minus the natural log of cumulative cases in the prior day, multiplied by 100.²¹ This measure gives the daily growth rate in percentage points.

The reference period for estimating the face cover mandate effects is 1–5 days *before* signing the order. We examine how effects change over five post-periods: 1–5 days, 6–10 days, 11–15 days, 16–20 days, and 21+ days. The model also tests for pre-trends over 6–10 days, 11–15 days, and 16+ days *before* signing the mandate. For all counties in the analytical sample, the main model includes daily data from March 31 (7 days before the first state signed a face cover man-

date) through May 22. The models are estimated by least squares weighted by the county 2019 population with heteroscedasticity-robust and state-clustered standard errors.

As noted above, all of the 15 states plus DC that mandate facial cover use in public also mandated employee mask use. To assess the effects of employee face cover mandates, we estimate another event-study model that focuses on the employee face cover mandate as the policy intervention. In this analysis, we exclude the 15 states plus DC with both public and employee face cover mandates and focus on the 20 states with employee only mandate and the 15 states without an employee mandate.

LIMITATIONS We are unable to measure facial cover use in the community (i.e. compliance with the mandate). As such, the estimates represent the intent-to-treat effects of these mandates, i.e. their effects as passed, and not the individual-level effect of wearing a face mask in public on own COVID-19 risk. Related, we do not measure enforcement of the mandates, which might affect compliance. We also do not have data on county-level mandates for wearing public-face masks. In some states without state-level mandates such as California,²² Texas,²³ and Colorado,²⁴ multiple counties have enacted such mandates. These county-level mandates do not bias the intent-to-treat estimates of effects of state-level mandates as actually passed, but they do add local-level heterogeneity not directly accounted for in the model. We do examine the robustness of estimates to excluding some of these states. Finally, we are able to examine only confirmed COVID-19 cases. However, there is evidence of a higher infection rate in the community than confirmed cases.²⁵

Study Results

EFFECTS OF MANDATES FOR FACE COVERING IN

PUBLIC Supplemental exhibit 1 in the online appendix¹⁹ plots the event study estimates of effects of state mandates for face covering in public on the county-level daily growth rate of COVID-19 cases with their 95% CIs, obtained from the main regression model (in appendix B) using county-level daily data from March 31 through May 22;¹⁹ appendix exhibit C1 (column 1) reports the exact estimates.¹⁹ The effects are shown over five periods after signing the orders, relative to the five days before signing (reference period). Also shown are estimated differences in daily COVID-19 growth rates between states with and without the mandates over three periods before the reference period.

There is a significant decline in daily COVID-19 growth rate after mandating facial covers in pub-

lic, with the effect increasing over time after signing the order. Specifically, the daily case rate declines by 0.9, 1.1, 1.4, 1.7, and 2.0 percentage-points within 1–5, 6–10, 11–15, and 16–20, and 21+ days after signing, respectively. All of these declines are statistically significant ($p < 0.05$, or less). In contrast, the pre-trends in COVID-19 case growth rates are small and statistically insignificant.

We also project the number of averted COVID-19 cases with the mandates for face mask use in public by comparing actual cumulative daily cases to daily cases predicted by the model if none of the states had enacted the public face cover mandate at the time they did (see details in appendix B).¹⁹ The main model estimates suggest that as many as 230,000–450,000 cases may have been averted due to these mandates by May 22. Estimates of averted cases should be viewed cautiously and only as general approximations.

ROBUSTNESS CHECKS We estimate multiple extensions of the main event study model to assess the robustness of estimates to different model specifications and sample choices. These checks start the event study on March 26, add flexible controls for social distancing and state reopening measures, employee face mask use mandates, and county-specific time trends, and allow time trends to vary by sociodemographic indicators. Other checks use the mandate effective date instead of signing date; use hyperbolic sine transformation to account for 0 cases; include states as the unit instead of counties; include only urban counties; exclude some states without state-level mandates but multiple counties having local mandates. The detailed description and results of these robustness checks are listed in appendix C.¹⁹ The results are robust across these checks; effects are smaller when using the effective date instead of the signing date, which differ by about 2–3 days on average suggesting earlier compliance, and when using states as the unit of analysis. But the estimates remain meaningful and statistically significant in all checks.

EFFECTS OF EMPLOYEE ONLY FACE COVERING MANDATES As noted above, we also directly assess the effects of states mandating only that certain employees wear face masks. Twenty states issued employee only mandates but did not issue public use mandates. We re-estimate the event-study model described above for this employee-only mandate including those 20 states (issued between April 17 and May 9) and the 15 states without mandates and excluding the 15 states plus DC that issued the public use mandates (plus the employee use mandates). Supplemental exhibit 2¹⁹ plots the event study

estimates of changes in county-level daily COVID-19 growth rates with the employee only face cover mandates and their 95% CIs. All pre- and post-mandate estimates are small and insignificant. Overall, these results indicate no evidence of declines in daily COVID-19 growth rates with the employee-only mandates.

Discussion

Around the world, governments have been fighting COVID-19 spread through a mix of policies and mitigation measures such as school and non-essential business closures and shelter-in-place orders. Some countries have also recommended or mandated widespread community use of facial masks as a mitigation measure. However, the effectiveness of this measure is highly debated. The debate and uncertainty are fueled by the limited direct empirical evidence on the magnitude of effects of widespread face mask use in public on COVID-19 mitigation. There is a critical need for empirical evidence on the magnitude of these effects from natural experiments.⁸ This evidence is especially relevant as governments reopen their economies and loosen social distancing restrictions at times while new infections continue without a vaccine or widely accessible and effective treatments in sight.

The study provides direct evidence on the effectiveness of widespread community use of face masks from a natural experiment that evaluates effects of state government mandates in the US for face mask use in public on COVID-19 spread. Fifteen states plus DC in the US have mandated this use between April 8 and May 5. Using an event study that examines daily changes in county-level COVID-19 growth rates, the study finds that mandating public use of face masks is associated with a reduction in the COVID-19 daily growth rate. Specifically, we find that the average daily county-level growth rate decreases by 0.9, 1.1, 1.4, 1.7, and 2.0 percentage-points in 1–5, 6–10, 11–15, 16–20, and 21+ days after signing, respectively.

These estimates are not small and represent nearly 16–19% of the effects of other social distancing measures (school closures, bans on large gatherings, shelter-in-place orders, and closures of restaurants, bars, and entertainment venues) after similar periods from their enactment.²¹ The estimates suggest increasing effectiveness and benefits from these mandates over time. By May 22, the estimates suggest that as many as 230,000–450,000 COVID-19 cases may have been averted based on when states passed these mandates. Again, the estimates of averted cases should be viewed cautiously as these are sensitive to assumptions and different approaches for

transforming the changes in the daily growth rate estimates to cases.

The early declines in the daily growth rate over 5 days after signing the order are broadly consistent with timing of effects of other social distancing measures such as business closures.²¹ While the median incubation period is estimated to be around 5 days,²⁶ there is a wide range from 2.2 (2.5th percentile) days to 11.5 days (97.5th percentile) suggesting that for many individuals symptoms may appear relatively early. Further, individuals may become aware of the mandates early through the governors' briefings and related media reports or may be anticipating them.

There is no evidence of differential pre-mandate COVID-19 trends with respect to issuing these mandates. The estimates represent the intent-to-treat effects of the statewide face cover mandates as passed, conditional on other national and local measures. In that way, the effects are independent of the CDC national guidance to wear facial masks issued on April 3. These effects are robust to several model checks. The study provides evidence from a natural experiment on effectiveness of mandating public use of face masks in mitigating COVID-19 spread. We find no evidence for effects of states mandating employee face mask use, perhaps because many businesses themselves have been requiring their employees to wear masks.^{27,28} In that sense, mandating employee mask use may be reinforcing what many businesses are already choosing to do on their own.

While the intent-to-treat estimates are of interest for understanding the effectiveness of these policies in limiting COVID-19 spread at the community and population level, understanding how their effects change with compliance and enforcement strategies is important for designing effective policies. Our study builds the first step in estimating the overall effect of these policies as enacted. However, these policies vary in their strictness and consequences of noncompliance. The mandates generally require wearing a face mask in public whenever the social distance cannot be maintained. Some states (such as Delaware, Maryland, Massachusetts, and Maine) clarify what "public" areas are, for example indoor space in retail establishments, outdoor space in busy parking lots and waiting areas for take-out services, semi-enclosed areas, such as in public transportation stops, and enclosed space, such as in taxis and other public transportation means. The language on enforcement and

penalties for non-compliance also vary. In some states such as Delaware, Hawaii, Maryland, and Massachusetts, the face mask orders state that they have the force and effect of law, with a willful violation subject to a criminal offense with penalties. For example, the order in Maryland states that "a person who knowingly and willfully violates this order is guilty of a misdemeanor and on conviction is subject to imprisonment not exceeding one year or a fine not exceeding \$5,000 or both".²⁹ In contrast, the orders of some other states such as Connecticut, Maine, and Pennsylvania, while clearly mandating the wearing of a face mask in public, do not appear to clearly specify that violations of the order are subject to criminal offense or penalties. Future work should examine if and how differences in strictness and enforcement modify the effects of these mandates.

Compliance and enforcement may also differ across contextual factors (such as other social distancing measures, workforce distribution, population demographic, socioeconomic, and cultural factors). In that regard, it is important to clarify that the suggested benefits from mandating face mask use are not substitutes for other social distancing measures; the effects are conditional on the other enacted social distancing measures and how communities are complying with them. It is also important to extend the evidence into additional measures of exposure to the virus in the community as data become available such as from serological testing for antibodies. Finally, future work can examine effects on deaths, which lag cases and change not only with number of cases but also with case severity.

Conclusion

The study provides evidence that states in the US mandating use of face masks in public had a greater decline in daily COVID-19 growth rates after issuing these mandates compared to states that did not issue mandates. These effects are observed conditional on other existing social distancing measures and are independent of the CDC recommendation to wear facial covers issued on April 3. As countries worldwide and states begin to relax social distancing restrictions and considering the high likelihood of a second COVID-19 wave in the fall/winter,³⁰ requiring use of face masks in public might help in reducing COVID-19 spread. ■

NOTES

- 1 Feng S, Shen C, Xia N, Song W, Fan M, Cowling BJ. Rational use of face masks in the COVID-19 pandemic. *Lancet Respir Med*. 2020;8(5):434–6.
- 2 Furukawa NW, Brooks JT, Sobel J. Evidence Supporting Transmission of Severe Acute Respiratory Syndrome Coronavirus 2 While Pre-symptomatic or Asymptomatic. *Emerg Infect Dis*. 2020;26(7).
- 3 Mizumoto K, Kagaya K, Zarebski A, Chowell G. Estimating the asymptomatic proportion of coronavirus disease 2019 (COVID-19) cases on board the Diamond Princess cruise ship, Yokohama, Japan, 2020. *Eurosurveillance*. 2020;25(10):2000180.
- 4 Rosenberg ES, Tesoriero JM, Rosenthal EM, Chung R, Barranco MA, Styler LH, et al. Cumulative incidence and diagnosis of SARS-CoV-2 infection in New York. *MedRxiv* [serial on the Internet]. 2020 May 29 [cited 2020 Jun 9]. Available from: <https://www.medrxiv.org/content/medrxiv/early/2020/05/29/2020.05.25.20113050.full.pdf>
- 5 World Health Organization. Advice on the use of masks in the context of COVID-19: interim guidance [Internet]. Geneva: World Health Organization; 2020 Apr 6 [cited 2020 Jun 9]. Available from: <https://apps.who.int/iris/handle/10665/331693>
- 6 Greenhalgh T, Schmid MB, Czypionka T, Bassler D, Gruer L. Face masks for the public during the covid-19 crisis. *BMJ*. 2020;369:m1435.
- 7 Brainard JS, Jones N, Lake I, Hooper L, Hunter P. Facemasks and similar barriers to prevent respiratory illness such as COVID-19: A rapid systematic review. *MedRxiv* [serial on the Internet]. 2020 Apr 6 [cited 2020 Jun 9]. Available from: <https://www.medrxiv.org/content/10.1101/2020.04.01.20049528v1>
- 8 Jefferson T, Jones M, Al Ansari LA, Bawazeer G, Beller E, Clark J, et al. Physical interventions to interrupt or reduce the spread of respiratory viruses. Part 1—Face masks, eye protection and person distancing: systematic review and meta-analysis. *MedRxiv* [serial on the Internet]. 2020 Mar 30 [cited 2020 May 31]. Available from: <https://www.medrxiv.org/content/10.1101/2020.03.30.20047217v2>
- 9 Xiao J, Shiu EYC, Gao H, Wong JY, Fong MW, Ryu S, et al. Nonpharmaceutical measures for pandemic influenza in nonhealthcare settings—personal protective and environmental measures. *Emerg Infect Dis*. 2020;26(5):967–75.
- 10 MacIntyre CR, Cauchemez S, Dwyer DE, Seale H, Cheung P, Browne G, et al. Face mask use and control of respiratory virus transmission in households. *Emerg Infect Dis*. 2009;15(2):233–41.
- 11 Long Y, Hu T, Liu L, Chen R, Guo Q, Yang L, Cheng Y, et al. Effectiveness of N95 respirators versus surgical masks against influenza: A systematic review and meta-analysis. *J Evid Based Med*. 2020;13(2):93–101.
- 12 Centers for Disease Control and Prevention. Recommendation regarding the use of cloth face coverings, especially in areas of significant community-based transmission [Internet]. Atlanta (GA): CDC; [page last reviewed 2020 Apr 3; cited 2020 Jun 9]. Available from: <https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/cloth-face-cover.html>
- 13 Pleitgen F, Schmidt N. Germans face fines of up to \$5,000 as wearing a face mask becomes mandatory. *CNN* [serial on the internet]. [Updated 2020 Apr 27; cited 2020 Jun 9]. Available from: <https://www.cnn.com/2020/04/27/europe/germany-face-mask-mandatory-grm-int/index.html>
- 14 Bostock B. France has made wearing face masks compulsory in public, while maintaining a controversial ban on burqas and niqabs. *Business Insider* [serial on the internet]. 2020 May 11 [cited 2020 Jun 9]. Available from: <https://www.businessinsider.com/france-face-masks-compulsory-burqas-niqabs-banned-criticism-muslims-2020-5>
- 15 Duncan C. Coronavirus: Spain makes face masks compulsory on public transport as country begins to ease strict lockdown. *The Independent* [serial on the internet]. 2020 May 2 [cited 2020 Jun 9]. Available from: <https://www.independent.co.uk/news/world/europe/coronavirus-face-masks-spain-public-transport-lockdown-pedro-sanchez-a9496031.html>
- 16 Which countries have made wearing face masks compulsory? *Al Jazeera News* [serial on the Internet]. [Updated 2020 May 29; cited 2020 May 31]. Available from: <https://www.aljazeera.com/news/2020/04/countries-wearing-face-masks-compulsory-200423094510867.html>
- 17 Morning Briefing. Tensions Over Masks, Social Distancing Lead To Violent Altercations, Shooting Death, Pipe Bomb Threats. *Kaiser Health News* [serial on the Internet]. 2020 May 5 [cited 31 Jun 9]. Available from: <https://khn.org/morning-breakfast/tensions-over-masks-social-distancing-lead-to-violent-altercations-shooting-death-pipe-bomb-threats/>
- 18 Commonwealth of Virginia. Office of the Governor, Executive Order Number 63 (2020) [Internet]. Richmond (VA): The Office; 2020 May 26 [cited 2020 Jun 9]. Available from: <https://www.governor.virginia.gov/media/governor.virginiagov/executive-actions/EO-63-and-Order-Of-Public-Health-Emergency-Five--Requirement-To-Wear-Face-Covering-While-Inside-Buildings.pdf>
- 19 To access the appendix, click on the Details tab of the article online.
- 20 Github. An ongoing repository of data on coronavirus cases and deaths in the U.S. (New York Times). Github [serial on the Internet]. 2020 [cited 2020 Apr 28]. Available from: <https://github.com/nytimes/covid-19-data>
- 21 Courtemanche C, Garuccio J, Le A, Pinkston J, Yelowitz A. Strong Social Distancing Measures In The United States Reduced The COVID-19 Growth Rate. *Health Aff (Millwood)*. 2020 May 14. [Epub ahead of print].
- 22 Face Masks to Become Part of Life in California, but the Rules Vary. *NBC Los Angeles* [serial on the Internet]. 2020 May 8 [cited 2020 Jun 9]. Available from: <https://www.nbclosangeles.com/news/local/california-face-mask-rules-corona-virus-covid-19/2359246/>
- 23 Nix MG, Huebinger J, Segura O Jr. Face Covering Guidelines for Businesses Operating in Texas. *Holland & Knight Law Firm Alerts* [serial on the Internet]. 2020 Apr 30 [cited 2020 Jun 9]. Available from: <https://www.hklaw.com/en/insights/publications/2020/04/face-covering-guidelines-for-businesses-operating-in-texas>
- 24 Sebastian M. These Colorado cities and counties require masks be worn in public places. *Denver Post* [serial on the Internet]. 2020 May 4 [cited 2020 May 31]. Available from: <https://www.denverpost.com/2020/05/04/colorado-denver-mask-required-orders/>
- 25 Bendavid E, Mulaney B, Sood N, Shah S, Ling L, Bromley-Dulciano R, et al. COVID-19 Antibody Seroprevalence in Santa Clara County, California. *MedRxiv* [serial on the Internet]. 2020 Apr 14 [cited 2020 May 31]. Available from: <https://www.medrxiv.org/content/10.1101/2020.04.14.20062463v2>
- 26 Lauer SA, Grantz KH, Bi Q, Jones FK, Zheng Q, Meredith HR, et al. The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application. *Ann Intern Med*. 2020;172(9):577–82.
- 27 Peterson H. Walmart is now requiring all US employees to wear face masks and will encourage customers to wear them while shopping. *Business Insider* [serial on the Internet]. 2020 April 17 [cited 2020 Jun 9]. Available from: <https://www.businessinsider.com/walmart-requires-face-masks>

workers-urges-shoppers-to-wear-them-2020-4

28 Rice B. Costco, Delta, United: List of businesses requiring employees or customers to wear face masks. *Enquirer* [serial on the Internet]. 2020 May 1 [cited 2020 May 27]. Available from: <https://www.cincinnati.com/story/news/2020/05/01/face-masks-chipotle-walmart-sams-club-among-businesses-requiring/>

3055849001/

29 State of Maryland, Executive Department. Order of The Governor of The State of Maryland Number 20-04-15-01 [Internet]. Annapolis (MD): State of Maryland; 2020 Apr 15 [cited 2020 Jun 9]. Available from: <https://governor.maryland.gov/wp-content/uploads/2020/04/Masks-and-Physical-Distancing-4.15.20.pdf>

30 Sun LH. CDC director warns second wave of coronavirus is likely to be even more devastating. *Washington Post* [serial on the Internet]. 2020 Apr 21 [cited 2020 Jun 9]. Available from: <https://www.washingtonpost.com/health/2020/04/21/coronavirus-secondwave-cdcdirector/>

See discussions, stats, and author profiles for this publication at: <https://www.researchgate.net/publication/342571914>

Visualizing the effectiveness of face masks in obstructing respiratory jets

Article in *Physics of Fluids* · June 2020

DOI: 10.1063/5.0016018

CITATIONS

45

READS

1,552

3 authors, including:

Siddhartha Verma
Florida Atlantic University

30 PUBLICATIONS 208 CITATIONS

[SEE PROFILE](#)

Manhar Dhanak
Florida Atlantic University

114 PUBLICATIONS 1,124 CITATIONS

[SEE PROFILE](#)

Some of the authors of this publication are also working on these related projects:

Wave Breaking Energy [View project](#)

Springer Handbook of Ocean Engineering [View project](#)

Visualizing the effectiveness of face masks in obstructing respiratory jets

Siddhartha Verma,^{1,a)} Manhar Dhanak,^{1,b)} and John Frankenfield^{1,c)}

Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, FL 33431, USA

(Dated: 4 June 2020)

The use of face masks in public settings has been widely recommended by public health officials during the current COVID-19 pandemic. The masks help mitigate the risk of cross-infection via respiratory droplets, however, there are no specific guidelines on mask materials and designs that are most effective in minimizing droplet dispersal. While there have been prior studies on the performance of medical-grade masks, there is insufficient data on cloth-based coverings which are being used by a vast majority of the general public. We use qualitative visualizations of emulated coughs and sneezes to examine how material- and design-choices impact the extent to which droplet-laden respiratory jets are blocked. Loosely folded face masks and bandana-style coverings provide minimal stopping-capability for the smallest aerosolized respiratory droplets. Well-fitted homemade masks with multiple layers of quilting fabric, and off-the-shelf cone style masks, proved to be the most effective in reducing droplet dispersal. These masks were able to curtail the speed and range of the respiratory jets significantly, albeit with some leakage through the mask material and from small gaps along the edges. Importantly, uncovered emulated coughs were able to travel noticeably farther than the currently recommended 6-foot distancing guideline. We outline the procedure for setting up simple visualization experiments using easily available materials, which may help healthcare professionals, medical researchers, and manufacturers in assessing the effectiveness of face masks and other personal protective equipment qualitatively.

Infectious respiratory illnesses can exact a heavy socio-economic toll on the most vulnerable members of our society, as has become evident from the current COVID-19 pandemic^{1,2}. The disease has overwhelmed healthcare infrastructure worldwide³, and its high contagion rate and relatively long incubation period^{4,5} have made it difficult to trace and isolate infected individuals. Current estimates indicate that about 35% of infected individuals do not display overt symptoms⁶, and may contribute to significant spread of the disease without their knowledge. In an effort to contain the unabated community spread of the disease, public health officials have recommended the implementation of various preventative measures, including social-distancing and the use of face masks in public settings⁷.

The rationale behind the recommendation for using masks or other face coverings is to reduce the risk of cross-infection via the transmission of respiratory droplets from infected to healthy individuals^{8,9}. The pathogen responsible for COVID-19 is found primarily in respiratory droplets that are expelled by infected individuals during coughing, sneezing, or even talking and breathing¹⁰⁻¹⁵. Apart from COVID-19, respiratory droplets are also the primary means of transmission for various other viral and bacterial illnesses, such as the common cold, influenza, tuberculosis, SARS (Severe Acute Respiratory Syndrome), and MERS (Middle East Respiratory Syndrome), to name a few¹⁶⁻¹⁹. These pathogens are enveloped within respiratory droplets, which may land on healthy individuals and result in direct transmission, or on inanimate objects which can lead to infection when a healthy individual comes in contact with them^{10,18,20,21}. In another mode of

transmission, the droplets or their evaporated contents may remain suspended in the air for long periods of time if they are sufficiently small. This can lead to airborne transmission^{19,22} when they are breathed in by another person, long after the infected individual may have left the area.

Several studies have investigated respiratory droplets produced by both healthy and infected individuals when performing various activities. The transport characteristics of these droplets can vary significantly depending on their diameter²³⁻²⁸. The reported droplet diameters vary widely among studies available in the literature, and usually lie within the range $1\mu\text{m} - 500\mu\text{m}$ ²⁹, with a mean diameter of approximately $10\mu\text{m}$ ³⁰. The larger droplets (diameter $> 100\mu\text{m}$) are observed to follow ballistic trajectories under the effects of gravity and aerodynamic drag^{20,31}. Intermediate-sized droplets^{20,31,32} may get carried over considerable distances within a multiphase turbulent cloud³³⁻³⁵. The smallest droplets and particles (diameter $< 5\mu\text{m}$ to $10\mu\text{m}$) may remain suspended in the air indefinitely, until they are carried away by a light breeze or ventilation airflow^{20,32}.

After being expelled into the ambient environment, the respiratory droplets experience varying degrees of evaporation depending on their size, the ambient humidity, and temperature. The smallest droplets may undergo complete evaporation, leaving behind a dried-out spherical mass consisting of the particulate contents (e.g., pathogens), which are referred to as 'droplet nuclei'³⁶. These desiccated nuclei, in combination with the smallest droplets, are potent transmission sources on account of two factors: 1) they can remain suspended in the air for hours after the infected individual has left the area, potentially infecting unsuspecting individuals who come into contact with them; and 2) they can penetrate deep into the airways of individuals who breathe them in, which increases the likelihood of infection even for low pathogen loads. At present, the role of droplet nuclei in the transmission of COVID-19 is not known with certainty, and the matter is the subject of ongoing studies³⁷⁻³⁹. In addition to generating microscopic droplets,

^{a)}Electronic mail: vermas@fau.edu; <http://www.computation.fau.edu>; Also at Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL 34946, USA

^{b)}Electronic mail: dhanak@fau.edu

^{c)}Electronic mail: jfranken@fau.edu

the action of sneezing can expel sheet-like layers of respiratory fluids⁴⁰, which may break apart into smaller droplets through a series of instabilities. The majority of the fluid contained within the sheet falls to the ground quickly within a short distance.

Regardless of their size, all droplets and nuclei expelled by infected individuals are potential carriers of pathogens. Various studies have investigated the effectiveness of medical-grade face masks and other personal protective equipment (PPE) in reducing the possibility of cross-infection via these droplets^{13,33,41-47}. Notably, such respiratory barriers do not prove to be completely effective against extremely fine aerosolized particles, droplets, and nuclei. The main issue tends to be air leakage, which can result in aerosolized pathogens being dispersed and suspended in the ambient environment for long periods of time after a coughing/sneezing event has occurred. A few studies have considered the filtration efficiency of homemade masks made with different types of fabric⁴⁸⁻⁵¹, however there is no broad consensus regarding their effectiveness in minimizing disease transmission^{52,53}. Nonetheless, the evidence suggests that masks and other face coverings are effective in stopping larger droplets, which although fewer in number compared to the smaller droplets and nuclei, constitute a large fraction of the total volume of the ejected respiratory fluid.

While detailed quantitative measurements are necessary for comprehensive characterization of PPE, qualitative visualizations can be invaluable for rapid iteration in early design stages, as well as for demonstrating the proper use of such equipment. Thus, one of the aims of this letter is to describe a simple setup for visualization experiments, which can be assembled using easily available materials. Such setups may be helpful to healthcare professionals, medical researchers, and to industrial manufacturers, for assessing the effectiveness of face masks and other protective equipment qualitatively. Testing designs quickly and early on can prove to be crucial, especially in the current pandemic scenario where one of the central objectives is to reduce the severity of the anticipated resurgence of infections in the upcoming months.

The visualization setup used in the current study is shown in Figure 1, and consists of a hollow manikin head which was padded on the inside to approximate the internal shape and volume of the nasal- and buccal-cavities in an adult. In case a more realistic representation is required, such a setup could include 3D-printed or silicone models of the internal airways. The manikin was mounted at a height of approximately 5 feet and 8 inches to emulate respiratory jets expelled by an average human male. The circular opening representing the mouth is 0.75 inches in diameter. The pressure impulse that emulates a cough or a sneeze may be delivered via a manual pump as shown in Figure 1, or via other sources such as an air compressor or a pressurized air canister. The air capacity of the pump is 500ml, which is comparable to the lower end of the total volume expelled during a cough⁵⁴. We note that the setup here emulates a simplified representation of an actual cough, which is an extremely complex and dynamic problem⁵⁵. We use a recreational fog/smoke machine to generate tracer particles for visualizing the expelled respiratory jets, using a liq-

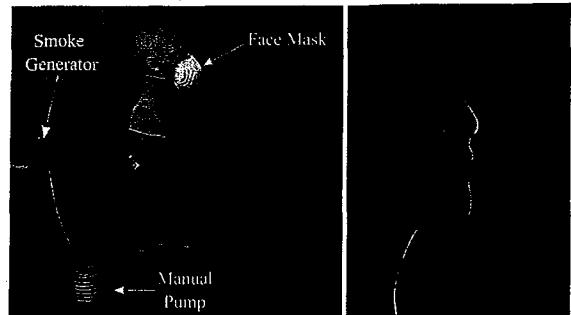


FIG. 1: Left - Experimental setup for qualitative visualization of emulated coughs and sneezes. Right - A laser sheet illuminates a puff emerging from the mouth.

uid mixture of distilled water (4 parts) and glycerin (1 part). Both the pressure- and smoke-sources were connected to the manikin using clear vinyl tubing and NPT fittings wherever necessary.

The resulting 'fog' or 'smoke' is visible in the right panel of Figure 1, and is composed of microscopic droplets of the vaporized liquid mixture. These are comparable in size to the smallest droplets expelled in a cough jet (approximately $1\mu\text{m}$ to $10\mu\text{m}$). We estimate that the fog droplets are less than $10\mu\text{m}$ in diameter, based on Stokes' law and our observation that they could remain suspended for up to 3 minutes in completely still air with no perceptible settling. The laser source used to generate the visualization sheet is an off-the-shelf 5mW green laser pointer with a 532nm wavelength. A plane vertical sheet is created by passing the laser beam through a thin cylindrical rod (diameter 5mm) made of borosilicate glass.

We first present visualization results from an emulation of an uncovered heavy cough. The spatial and temporal evolution of the resulting jet is shown in Figure 2. The aerosolized microscopic droplets visible in the laser sheet act as tracer particles, revealing a 2-dimensional cross section of the conical turbulent jet. These tracers depict the fate of the smallest ejected droplets, and any resulting nuclei that may form. We observed high variability in droplet dispersal patterns from one experimental run to another, which was caused by otherwise imperceptible changes in the ambient airflow. This highlights the importance of designing ventilation systems that specifically aim to minimize the possibility of cross-infection in a confined setting^{23,56-58}.

Despite high variability, we consistently observed jets that travelled farther than the 6-foot minimum distance proposed by the U.S. Centers for Disease Control and Prevention⁷. In the images shown in Figure 2, the ejected tracers were observed to travel up to 12 feet within approximately 50 seconds. Moreover, the tracer droplets remained suspended midair for up to 3 minutes in the quiescent environment. These observations, in combination with other recent studies^{35,59}, suggest that current social-distancing guidelines may need to be updated to account for aerosol-based transmission of pathogens.

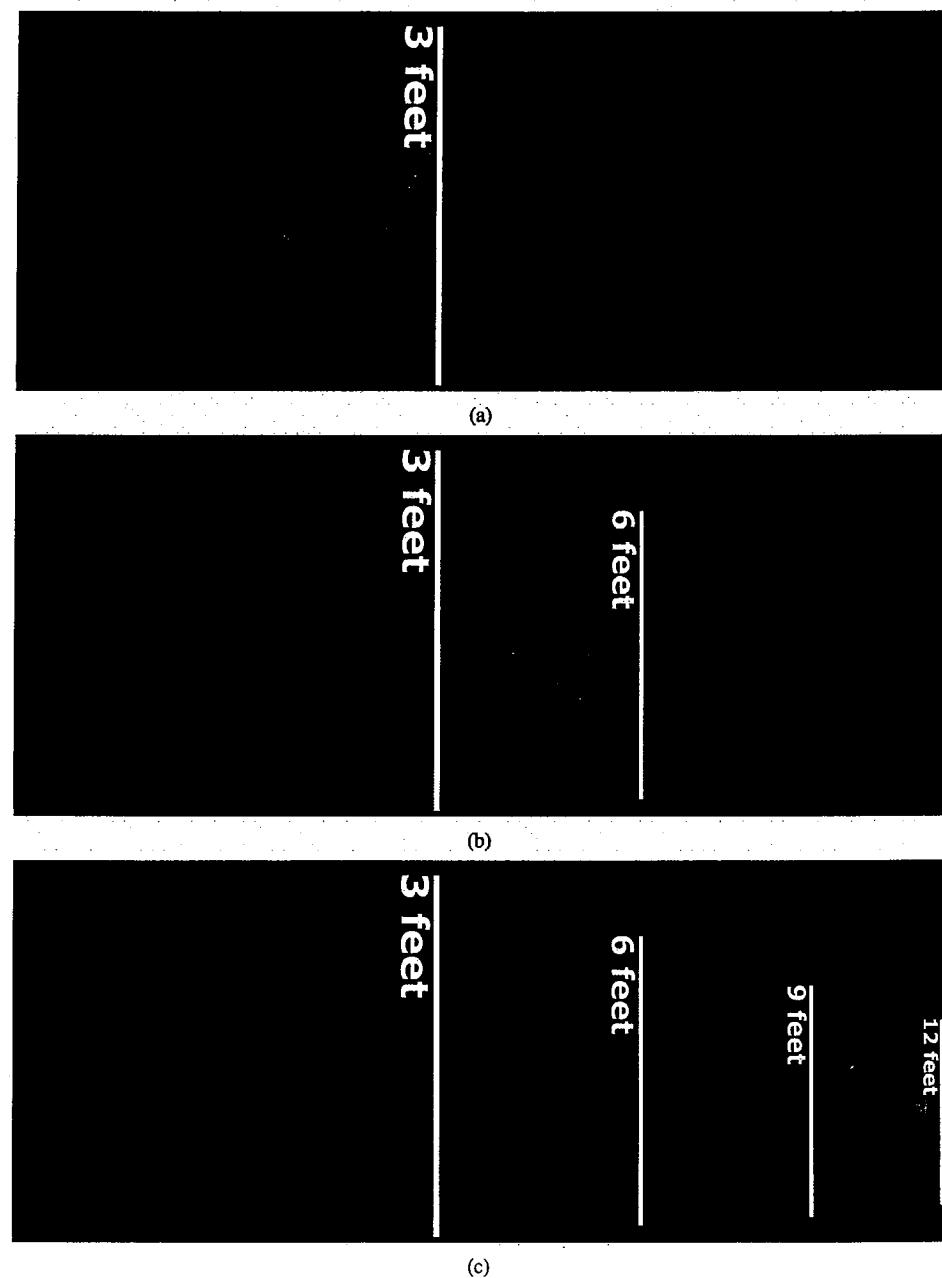


FIG. 2: An emulated heavy cough jet travels up to 12 feet in approximately 50 seconds, which is twice the CDC's recommended distancing guideline of 6 feet⁷. (a) 2.3 seconds after initiation of the emulated cough (b) 11 seconds (c) 53 seconds.

We note that although the unobstructed turbulent jets were observed to travel up to 12 feet, a large majority of the ejected droplets will fall to the ground by this point. Importantly, both the number and concentration of the droplets will decrease with increasing distance⁵⁹, which is the fundamental rationale

behind social-distancing.

We now discuss dispersal patterns observed when the mouth opening was blocked using three different types of face masks. For these results, we focus on masks that are readily accessible to the general public, and which do not draw

away from the supply of medical-grade masks and respirators for healthcare workers. Figure 3 shows the impact of using a folded cotton handkerchief mask on the expelled respiratory jet. The folded mask was constructed by following instructions recommended by the U.S. Surgeon General⁶⁰. It is evident that while the forward motion of the jet is impeded significantly, there is notable leakage of tracer droplets through the mask material. We also observe a small amount of tracers escaping from the top edge of the mask, where gaps exist between the nose and the cloth material. These droplets remained suspended in the air until they were dispersed by ambient disturbances. In addition to the folded handkerchief mask discussed here, we tested a single-layer bandana-style covering (not shown) which proved to be substantially less effective in stopping the jet and the tracer droplets.

We now examine a homemade mask that was stitched using two-layers of cotton quilting fabric consisting of 70 threads per inch. The mask's impact on droplet dispersal is shown in Figure 4. We observe that the mask is able to arrest the forward motion of the tracer droplets almost completely. There is minimal forward leakage through the material, and most of the tracer-escape happens from the gap between the nose and the mask along the top edge. The forward distance covered by the leaked jet is less than 3 inches in this case. The final mask design that we tested was a non-sterile cone-style mask that is available in most pharmacies. The corresponding droplet-dispersal visualizations are shown in Figure 5, which indicate that the flow is impeded significantly compared to Figure 2 and Figure 3. However, there is noticeable leakage from gaps along the top edge. The forward distance covered by the leaked jet is approximately 6 inches from the mouth opening, which is farther than the distance for the stitched mask in Figure 4.

A summary of the various scenarios examined in this study is provided in Table I, along with details about the mask material and the average distances travelled by the respiratory jets. We observe that a single-layer bandana-style covering can reduce the range of the expelled jet to some extent, compared to an uncovered cough. Importantly, both the material and construction technique have a notable impact on the masks' stopping-capability. The stitched mask made of quilting cotton was observed to be the most effective, followed by the commercial mask, the folded handkerchief, and finally, the bandana. Importantly, our observations suggest that a higher thread count by itself is not sufficient to guarantee better stopping-capability; the bandana covering, which has the highest thread count among all the cloth masks tested, turned out to be the least effective.

We note that it is likely that healthcare professionals trained properly in the use of high-quality fitted masks will not experience leakage to the extent that we have observed in this study. However, leakage remains a likely issue for members of the general public who often rely on loose-fitting homemade masks. Additionally, the masks may get saturated after prolonged use, which might also influence their filtration capability. We reiterate that although the non-medical masks tested in this study experienced varying degrees of flow leakage, they are likely to be effective in stopping larger respiratory droplets.

In addition to providing an initial indication of the effectiveness of protective equipment, the visuals used in this study can help convey to the general public the rationale behind social-distancing guidelines and recommendations for using face masks. Promoting widespread awareness of effective preventative measures is crucial, given the high likelihood of a resurgence of COVID-19 infections in the fall and winter.

DATA AVAILABILITY

The data that supports the findings of this study is available within the article.

- United Nations, "A UN framework for the immediate socio-economic response to COVID-19," Tech. Rep. April (United Nations, 2020).
- M. Nicola, Z. Alsaifi, C. Sohrabi, A. Kerwan, A. Al-Jabir, C. Iosifidis, M. Agha, and R. Agha, "The socio-economic implications of the coronavirus pandemic (COVID-19): A review," *International journal of surgery (London, England)* **78**, 185–193 (2020).
- E. J. Emanuel, G. Persad, R. Upshur, B. Thome, M. Parker, A. Glickman, C. Zhang, C. Boyle, M. Smith, and J. P. Phillips, "Fair Allocation of Scarce Medical Resources in the Time of Covid-19," *New England Journal of Medicine* **382**, 2049–2055 (2020).
- S. A. Lauer, K. H. Grantz, Q. Bi, F. K. Jones, Q. Zheng, H. R. Meredith, A. S. Azman, N. G. Reich, and J. Lessler, "The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application," *Annals of Internal Medicine* **172**, 577–582 (2020).
- X. He, E. H. Y. Lau, P. Wu, X. Deng, J. Wang, X. Hao, Y. C. Lau, J. Y. Wong, Y. Guan, X. Tan, X. Mo, Y. Chen, B. Liao, W. Chen, F. Hu, Q. Zhang, M. Zhong, Y. Wu, L. Zhao, F. Zhang, B. J. Cowling, F. Li, and G. M. Leung, "Temporal dynamics in viral shedding and transmissibility of COVID-19," *Nature Medicine* **26**, 672–675 (2020).
- Centers for Disease Control and Prevention, "COVID-19 Pandemic Planning Scenarios," <https://www.cdc.gov/coronavirus/2019-ncov/hcp/planning-scenarios.html> (May, 2020).
- Centers for Disease Control and Prevention, "Social Distancing, Quarantine, and Isolation," <https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/social-distancing.html> (May, 2020).
- C. R. MacIntyre, S. Cauchemez, D. E. Dwyer, H. Seale, P. Cheung, G. Browne, M. Fashner, J. Wood, Z. Gao, R. Booy, and N. Ferguson, "Face mask use and control of respiratory virus transmission in households," *Emerging infectious diseases* **15**, 233–241 (2009).
- C. R. MacIntyre and A. A. Chughtai, "A rapid systematic review of the efficacy of face masks and respirators against coronaviruses and other respiratory transmissible viruses for the community, healthcare workers and sick patients," *International Journal of Nursing Studies* **103**629 (2020).
- L. Morawska, "Droplet fate in indoor environments, or can we prevent the spread of infection?" *Indoor Air* **16**, 335–347 (2006).
- S. Stelzer-Braend, B. G. Oliver, A. J. Blazey, E. Argent, T. P. Newsome, W. D. Rawlinson, and E. R. Tovey, "Exhalation of respiratory viruses by breathing, coughing, and talking," *Journal of Medical Virology* **81**, 1674–1679 (2009).
- L. Morawska, G. R. Johnson, Z. D. Ristovski, M. Hargreaves, K. Mengersen, S. Corbett, C. Y. H. Chao, Y. Li, and D. Katoshevski, "Size distribution and sites of origin of droplets expelled from the human respiratory tract during expiratory activities," *Journal of Aerosol Science* **40**, 256–269 (2009).
- C. Chen, C. H. Lin, Z. Jiang, and Q. Chen, "Simplified models for exhaled airflow from a cough with the mouth covered," *Indoor Air* **24**, 580–591 (2014).
- V. Stadnytskyi, C. E. Bax, A. Bax, and P. Anfinrud, "The airborne lifetime of small speech droplets and their potential importance in SARS-CoV-2 transmission," *Proceedings of the National Academy of Sciences* **3–5** (2020).
- P. Bahl, C. Doolan, C. de Silva, A. A. Chughtai, L. Bourouiba, and C. R. MacIntyre, "Airborne or Droplet Precautions for Health Workers Treat-

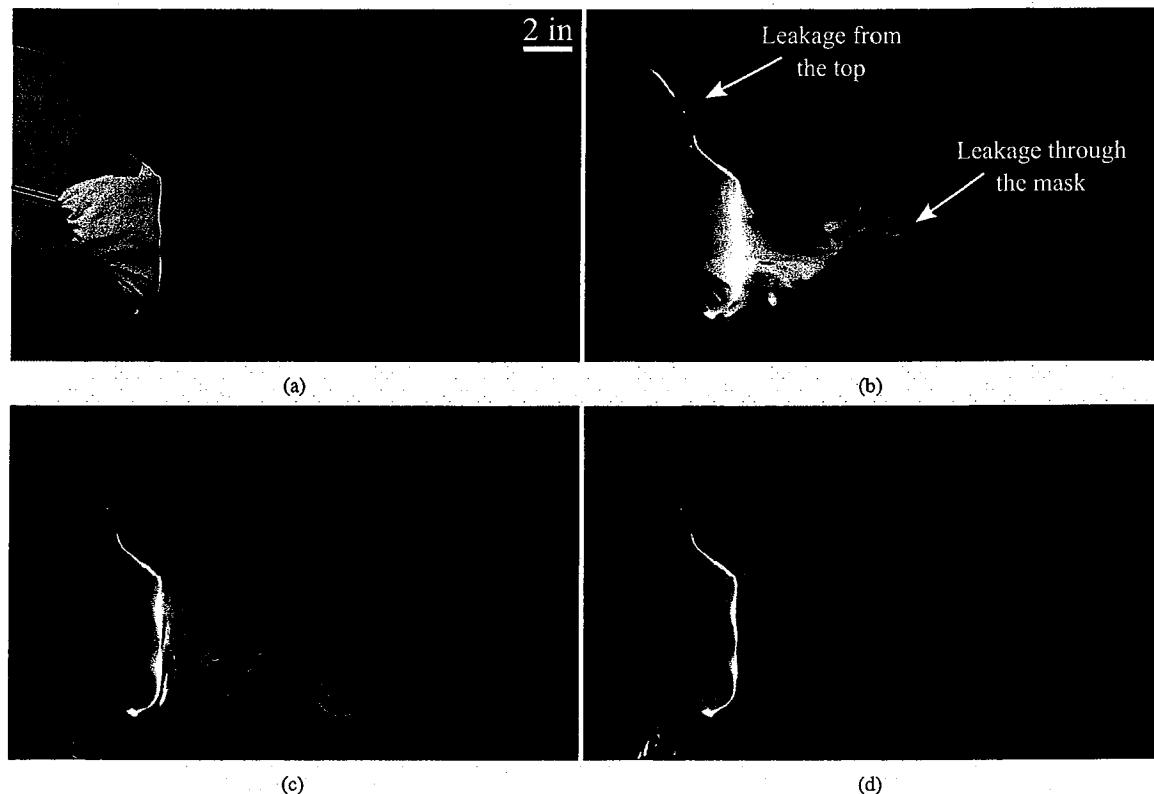


FIG. 3: (a) A face mask constructed using a folded handkerchief. (b) 0.5 seconds after initiation of the emulated cough (c) 2.27 seconds (d) 5.55 seconds.

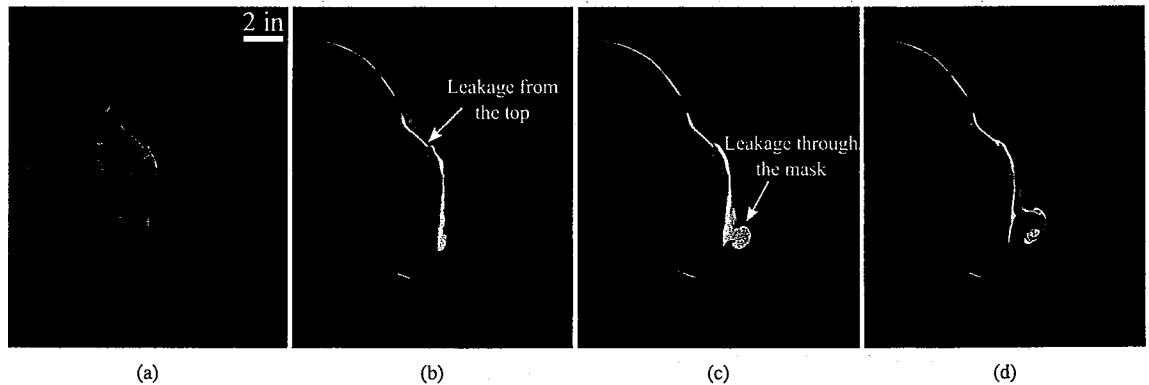


FIG. 4: (a) A homemade face mask stitched using two-layers of cotton quilting fabric. (b) 0.2 seconds after initiation of the emulated cough (c) 0.47 seconds (d) 1.68 seconds.

ing Coronavirus Disease 2019?" *The Journal of Infectious Diseases* , 1–8 (2020).

¹⁶L. C. Jennings and E. C. Dick, "Transmission and control of rhinovirus colds," *European Journal of Epidemiology* **3**, 327–335 (1987).

¹⁷Centers for Disease Control and Prevention, "Core Curriculum on Tuberculosis : What the Clinician Should Know," *Tech. Rep.* (2013).

¹⁸J. S. Kutter, M. I. Spronken, P. L. Fraaij, R. A. Fouchier, and S. Herfst, "Transmission routes of respiratory viruses among humans," *Current Opinion in Virology* **28**, 142 – 151 (2018).

¹⁹R. Tellier, Y. Li, B. J. Cowling, and J. W. Tang, "Recognition of aerosol transmission of infectious agents: A commentary," *BMC Infectious Diseases* **19**, 1–9 (2019).

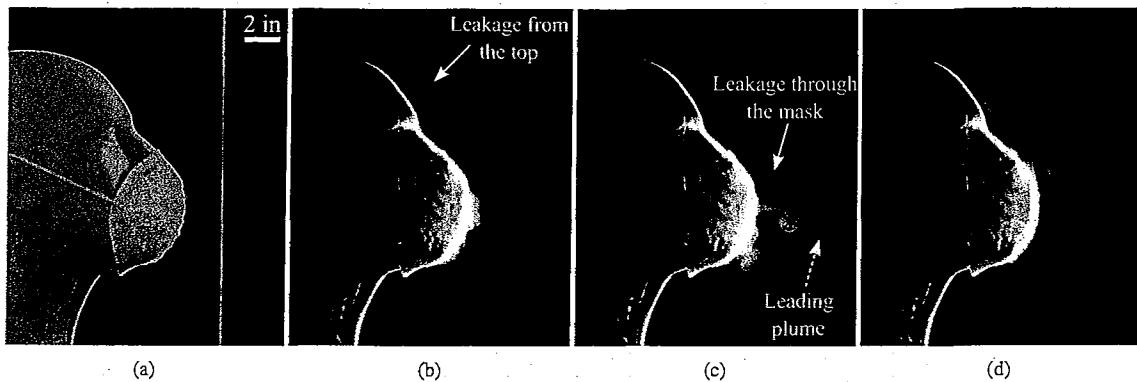


FIG. 5: (a) An off-the-shelf cone style mask. (b) 0.2 seconds after initiation of the emulated cough (c) 0.97 seconds. The leading plume, which has dissipated considerably, is faintly visible. (d) 3.7 seconds.

TABLE I: A summary of the different types of masks tested, the materials they are made of, and their effectiveness in impeding droplet-dispersal. The last column indicates the distance travelled by the jet beyond which its forward progression stops. The average distances have been computed over multiple runs, and the symbol ‘~’ is used to indicate the presence of high variability in the first two scenarios listed.

Mask type	Material	Threads per inch	Average jet distance
Uncovered	—	—	~ 8 feet
Bandana	Elastic T-shirt material	85	~3 feet 7 inches
Folded handkerchief	Cotton	55	1 foot 3 inches
Stitched mask	Quilting cotton	70	2.5 inches
Commercial mask ^a	Unknown	Randomly assorted fibers	8 inches

^a CVS Cone Face Mask

²⁰R. Tellier, “Review of aerosol transmission of influenza A virus,” *Emerging infectious diseases* **12**, 1657–1662 (2006).

²¹A. Fernstrom and M. Goldblatt, “Aerobiology and Its Role in the Transmission of Infectious Diseases,” *Journal of Pathogens* **2013**, 1–13 (2013).

²²J. W. Tang, C. J. Noakes, P. V. Nielsen, I. Eames, A. Nicolle, Y. Li, and G. S. Settles, “Observing and quantifying airflows in the infection control of aerosol- and airborne-transmitted diseases: An overview of approaches,” *Journal of Hospital Infection* **77**, 213–222 (2011).

²³J. W. Tang, Y. Li, I. Eames, P. K. S. Chan, and G. L. Ridgway, “Factors involved in the aerosol transmission of infection and control of ventilation in healthcare premises,” *Journal of Hospital Infection* **64**, 100–114 (2006).

²⁴S. W. Zhu, S. Kato, and J. H. Yang, “Study on transport characteristics of saliva droplets produced by coughing in a calm indoor environment,” *Building and Environment* **41**, 1691–1702 (2006).

²⁵X. Xie, Y. Li, A. T. Y. Chwang, P. L. Ho, and W. H. Seto, “How far droplets can move in indoor environments – revisiting the Wells evaporation-falling curve,” *Indoor Air* **17**, 211–225 (2007).

²⁶S. Liu and A. Novoselac, “Transport of airborne particles from an unobstructed cough jet,” *Aerosol Science and Technology* **48**, 1183–1194 (2014).

²⁷H. Nishimura, S. Sakata, and A. Kaga, “A new methodology for studying dynamics of aerosol particles in sneeze and cough using a digital high-vision, high-speed video system and vector analyses,” *PLoS ONE* **8** (2013).

²⁸J. Gralton, E. Tovey, M. L. McLaws, and W. D. Rawlinson, “The role of particle size in aerosolised pathogen transmission: A review,” *Journal of Infection* **62**, 1–13 (2011).

²⁹Z. Y. Han, W. G. Weng, and Q. Y. Huang, “Characterizations of particle size distribution of the droplets exhaled by sneeze,” *Journal of the Royal Society Interface* **10** (2013).

³⁰C. Y. Chao, M. P. Wan, L. Morawska, G. R. Johnson, Z. D. Ristovski, M. Hargreaves, K. Mengersen, S. Corbett, Y. Li, X. Xie, and D. Katoshevski, “Characterization of expiration air jets and droplet size distributions immediately at the mouth opening,” *Journal of Aerosol Science* **40**, 122–133 (2009).

³¹W. F. Wells, “On air-borne infection: Study II. Droplets and droplet nuclei,” *American Journal of Epidemiology* **20**, 611–618 (1934).

³²J. P. Duguid, “The size and the duration of air-carriage of respiratory droplets and droplet-nuclei,” *The Journal of hygiene* **78**, 471–479 (2020).

³³J. W. Tang, T. J. Liebner, B. A. Craven, and G. S. Settles, “A schlieren optical study of the human cough with and without wearing masks for aerosol infection control,” *Journal of the Royal Society Interface* **6**, 727–736 (2009).

³⁴L. Bourouiba, E. Dehandschoewercker, and J. W. Bush, “Violent expiratory events: On coughing and sneezing,” *Journal of Fluid Mechanics* **745**, 537–563 (2014).

³⁵L. Bourouiba, “Turbulent Gas Clouds and Respiratory Pathogen Emissions: Potential Implications for Reducing Transmission of COVID-19,” *JAMA - Journal of the American Medical Association*, E1–E2 (2020).

³⁶M. Nicas, W. W. Nazaroff, and A. Hubbard, “Toward Understanding the Risk of Secondary Airborne Infection: Emission of Respirable Pathogens,” *Journal of Occupational and Environmental Hygiene* **2**, 143–154 (2005).

³⁷Y. Liu, Z. Ning, Y. Chen, M. Guo, Y. Liu, N. K. Gali, L. Sun, Y. Duan, J. Cai, D. Westerdahl, X. Liu, K. Xu, K.-f. Ho, H. Kan, Q. Fu, and K. Lan, “Aerodynamic analysis of SARS-CoV-2 in two Wuhan hospitals,” *Nature* (2020).

³⁸S. W. X. Ong, Y. K. Tan, P. Y. Chia, T. H. Lee, O. T. Ng, M. S. Y. Wong, and K. Marimuthu, “Air, Surface Environmental, and Personal Protective Equipment Contamination by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) From a Symptomatic Patient,” *JAMA - Journal of*

the American Medical Association **323**, 1610–1612 (2020).

³⁹J. Cai, W. Sun, J. Huang, M. Gamber, J. Wu, and G. He, "Indirect Virus Transmission in Cluster of COVID-19 Cases, Wenzhou, China, 2020," *Emerging infectious diseases* **26**, 1343–1345 (2020).

⁴⁰B. E. Scharfman, A. H. Techet, J. W. Bush, and L. Bourouiba, "Visualization of sneeze ejecta: steps of fluid fragmentation leading to respiratory droplets," *Experiments in Fluids* **57**, 1–9 (2016).

⁴¹G. B. Ha'eri and A. M. Wiley, "The Efficacy of Standard Surgical Face Masks: An Investigation Using 'Tracer Particles,'" *Clinical Orthopaedics and Related Research* **148** (1980).

⁴²D. F. Johnson, J. D. Druce, C. Birch, and M. L. Grayson, "A Quantitative Assessment of the Efficacy of Surgical and N95 Masks to Filter Influenza Virus in Patients with Acute Influenza Infection," *Clinical Infectious Diseases* **49**, 275–277 (2009).

⁴³W. G. Lindsley, W. P. King, R. E. Thewlis, J. S. Reynolds, K. Panday, G. Cao, and J. V. Szalajda, "Dispersion and exposure to a cough-generated aerosol in a simulated medical examination room," *Journal of Occupational and Environmental Hygiene* **9**, 681–690 (2012).

⁴⁴W. G. Lindsley, J. D. Noti, F. M. Blachere, J. V. Szalajda, and D. H. Beezhold, "Efficacy of face shields against cough aerosol droplets from a cough simulator," *Journal of Occupational and Environmental Hygiene* **11**, 509–518 (2014).

⁴⁵G. Zayas, M. C. Chiang, E. Wong, F. Macdonald, C. F. Lange, A. Senthilselvan, and M. King, "Effectiveness of cough etiquette maneuvers in disrupting the chain of transmission of infectious respiratory diseases," *BMC Public Health* **13**, 1–11 (2013).

⁴⁶N. H. L. Leung, D. K. W. Chu, E. Y. C. Shiu, K.-H. Chan, J. J. McDevitt, B. J. P. Hau, H.-L. Yen, Y. Li, D. K. M. Ip, J. S. M. Peiris, W.-H. Seto, G. M. Leung, D. K. Milton, and B. J. Cowling, "Respiratory virus shedding in exhaled breath and efficacy of face masks," *Nature Medicine* **26**, 676–680 (2020).

⁴⁷S. S. Zhou, S. Lukula, C. Chiassone, R. W. Nims, D. B. Suchmann, and M. K. Ijaz, "Assessment of a respiratory face mask for capturing air pollutants and pathogens including human influenza and rhinoviruses," *Journal of thoracic disease* **10**, 2059–2069 (2018).

⁴⁸S. Rengasamy, B. Eimer, and R. E. Shaffer, "Simple Respiratory Protection—Evaluation of the Filtration Performance of Cloth Masks and Common Fabric Materials Against 20–1000 nm Size Particles," *The Annals of Occupational Hygiene* **54**, 789–798 (2010).

⁴⁹A. Davies, K.-A. Thompson, K. Giri, G. Kafatos, J. Walker, and A. Bennett, "Testing the efficacy of homemade masks: Would they protect in an influenza pandemic?" *Disaster Medicine and Public Health Preparedness* **7**, 413–418 (2013).

⁵⁰S. Bae, M.-C. Kim, J. Y. Kim, H.-H. Cha, J. S. Lim, J. Jung, M.-J. Kim, D. K. Oh, M.-K. Lee, S.-H. Choi, M. Sung, S.-B. Hong, J.-W. Chung, and S.-H. Kim, "Effectiveness of Surgical and Cotton Masks in Blocking SARS-CoV-2: A Controlled Comparison in 4 Patients," *Annals of internal medicine* **173**, M20–1342 (2020).

⁵¹A. Konda, A. Prakash, G. A. Moss, M. Schmoldt, G. D. Grant, and S. Guha, "Aerosol Filtration Efficiency of Common Fabrics Used in Respiratory Cloth Masks," *ACS Nano* **14**, 6339–6347 (2020).

⁵²S. Feng, C. Shen, N. Xia, W. Song, M. Fan, and B. J. Cowling, "Rational use of face masks in the COVID-19 pandemic," *The Lancet Respiratory Medicine* **8**, 434–436 (2020).

⁵³J. Xiao, E. Y. C. Shiu, H. Gao, J. Y. Wong, M. W. Fong, S. Ryu, and B. J. Cowling, "Nonpharmaceutical measures for pandemic influenza in nonhealthcare settings—personal protective and environmental measures," *Emerging infectious diseases* **26**, 967–975 (2020).

⁵⁴J. K. Gupta, C.-H. Lin, and Q. Chen, "Flow dynamics and characterization of a cough," *Indoor Air* **19**, 517–525 (2009).

⁵⁵J. Hsu, R. Stone, R. Logan-Sinclair, M. Worsdell, C. Busst, and K. Chung, "Coughing frequency in patients with persistent cough: assessment using a 24 hour ambulatory recorder," *European Respiratory Journal* **7**, 1246–1253 (1994).

⁵⁶E. Bjørn and P. V. Nielsen, "Dispersal of exhaled air and personal exposure in displacement ventilated rooms," *Indoor Air* **12**, 147–164 (2002).

⁵⁷H. Qian, Y. Li, P. V. Nielsen, C. E. Hyldgaard, T. W. Wong, and A. T. Y. Chwang, "Dispersion of exhaled droplet nuclei in a two-bed hospital ward with three different ventilation systems," *Indoor Air* **16**, 111–128 (2006).

⁵⁸Y. Li, G. M. Leung, J. W. Tang, X. Yang, C. Y. Chao, J. Z. Lin, J. W. Lu, P. V. Nielsen, J. Niu, H. Qian, A. C. Sleigh, H. J. Su, J. Sundell, T. W. Wong, and P. L. Yuen, "Role of ventilation in airborne transmission of infectious agents in the built environment - A multidisciplinary systematic review," *Indoor Air* **17**, 2–18 (2007).

⁵⁹T. Dbouk and D. Drikakis, "On coughing and airborne droplet transmission to humans," *Physics of Fluids* **32**, 053310 (2020).

⁶⁰Centers for Disease Control and Prevention (CDC), "How to Make Your own Face Covering," <https://www.youtube.com/watch?v=tPx1yqvJgf4> (2020).

16-405. City council; ordinances; style; publication; emergency ordinances.

The style of ordinances of a city of the first class shall be: "Be it ordained by the mayor and city council of the city of," and all ordinances of a general nature shall, within fifteen days after they are passed, be published in a legal newspaper in or of general circulation within the city, or in pamphlet form, to be distributed or sold, as may be provided by ordinance. Every ordinance fixing a penalty or forfeiture for its violation shall, before the ordinance takes effect, be published for at least one week in the manner prescribed in this section. In cases of riots, infectious diseases, or other impending danger, or any other emergency requiring its immediate operation, such ordinance shall take effect upon the proclamation of the mayor immediately upon its first publication as provided in this section.

Source: Laws 1901, c. 18, § 47, p. 245; R.S.1913, § 4898; C.S.1922, § 4066; C.S.1929, § 16-405; R.S.1943, § 16-405; Laws 1971, LB 282, § 1; Laws 2016, LB704, § 74; Laws 2019, LB194, § 26.

Annotations

Publication in one regular issue of a legal newspaper in any week was sufficient notwithstanding this section and home rule charter. *Skag-Way Department Stores, Inc. v. City of Grand Island*, 176 Neb. 169, 125 N.W.2d 529 (1964).

One insertion in a daily paper does not meet the requirement of statute, since a publication must be continued in each issue thereof for a week. *Union Pacific Railway Co. v. McNally*, 54 Neb. 112, 74 N.W. 390 (1898); *Union Pacific Railway Co. v. Montgomery*, 49 Neb. 429, 68 N.W. 619 (1896).

One publication is sufficient if in weekly paper. *State ex rel. Hahn v. Hardy*, 7 Neb. 377 (1878).